BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 23696219)

  • 1. An embedded four-channel receive-only RF coil array for fMRI experiments of the somatosensory pathway in conscious awake marmosets.
    Papoti D; Yen CC; Mackel JB; Merkle H; Silva AC
    NMR Biomed; 2013 Nov; 26(11):1395-402. PubMed ID: 23696219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and implementation of embedded 8-channel receive-only arrays for whole-brain MRI and fMRI of conscious awake marmosets.
    Papoti D; Yen CC; Hung CC; Ciuchta J; Leopold DA; Silva AC
    Magn Reson Med; 2017 Jul; 78(1):387-398. PubMed ID: 27501382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of the BOLD and CBV fMRI responses to somatosensory stimulation in awake marmosets (Callithrix jacchus).
    Hirano Y; Yen CC; Liu JV; Mackel JB; Merkle H; Nascimento GC; Stefanovic B; Silva AC
    NMR Biomed; 2018 Mar; 31(3):. PubMed ID: 29285809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A radiofrequency coil to facilitate task-based fMRI of awake marmosets.
    Gilbert KM; Dureux A; Jafari A; Zanini A; Zeman P; Menon RS; Everling S
    J Neurosci Methods; 2023 Jan; 383():109737. PubMed ID: 36341968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated radiofrequency array and animal holder design for minimizing head motion during awake marmoset functional magnetic resonance imaging.
    Schaeffer DJ; Gilbert KM; Hori Y; Gati JS; Menon RS; Everling S
    Neuroimage; 2019 Jun; 193():126-138. PubMed ID: 30879997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Open-source hardware designs for MRI of mice, rats, and marmosets: Integrated animal holders and radiofrequency coils.
    Gilbert KM; Schaeffer DJ; Gati JS; Klassen LM; Everling S; Menon RS
    J Neurosci Methods; 2019 Jan; 312():65-72. PubMed ID: 30468825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Whole brain mapping of somatosensory responses in awake marmosets investigated with ultra-high-field fMRI.
    Cléry JC; Hori Y; Schaeffer DJ; Gati JS; Pruszynski JA; Everling S
    J Neurophysiol; 2020 Dec; 124(6):1900-1913. PubMed ID: 33112698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A geometrically adjustable receive array for imaging marmoset cohorts.
    Gilbert KM; Gati JS; Klassen LM; Zeman P; Schaeffer DJ; Everling S; Menon RS
    Neuroimage; 2017 Aug; 156():78-86. PubMed ID: 28499849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved SNR for combined TMS-fMRI: A support device for commercially available body array coil.
    Wang WT; Xu B; Butman JA
    J Neurosci Methods; 2017 Sep; 289():1-7. PubMed ID: 28673806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo functional brain mapping using ultra-high-field fMRI in awake common marmosets.
    Zanini A; Dureux A; Jafari A; Gilbert KM; Zeman P; Bellyou M; Li A; Tuin CV; Everling S
    STAR Protoc; 2023 Dec; 4(4):102586. PubMed ID: 37738120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RF surface receive array coils: the art of an LC circuit.
    Fujita H; Zheng T; Yang X; Finnerty MJ; Handa S
    J Magn Reson Imaging; 2013 Jul; 38(1):12-25. PubMed ID: 23649497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. fMRI in the awake marmoset: somatosensory-evoked responses, functional connectivity, and comparison with propofol anesthesia.
    Liu JV; Hirano Y; Nascimento GC; Stefanovic B; Leopold DA; Silva AC
    Neuroimage; 2013 Sep; 78():186-95. PubMed ID: 23571417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chronic multiscale imaging of neuronal activity in the awake common marmoset.
    Yamada Y; Matsumoto Y; Okahara N; Mikoshiba K
    Sci Rep; 2016 Oct; 6():35722. PubMed ID: 27786241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization and evaluation of a flexible MRI receive coil array for radiation therapy MR treatment planning using highly decoupled RF circuits.
    McGee KP; Stormont RS; Lindsay SA; Taracila V; Savitskij D; Robb F; Witte RJ; Kaufmann TJ; Huston J; Riederer SJ; Borisch EA; Rossman PJ
    Phys Med Biol; 2018 Apr; 63(8):08NT02. PubMed ID: 29537384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A flexible 8.5 MHz litz wire receive array for field-cycling imaging.
    Stormont RS; Davies GR; Ross PJ; Lurie DJ; Broche LM
    Phys Med Biol; 2023 Feb; 68(5):. PubMed ID: 36750000
    [No Abstract]   [Full Text] [Related]  

  • 16. Effects of proximity and noise level of phased array coil elements on overall signal-to-noise in parallel MR spectroscopy.
    Fleischer CC; Zhong X; Mao H
    Magn Reson Imaging; 2018 Apr; 47():125-130. PubMed ID: 29217493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel whole-head RF coil design tailored for concurrent multichannel brain stimulation and imaging at 3T.
    Navarro de Lara LI; Stockmann JP; Meng Q; Keil B; Mareyam A; Uluç I; Daneshzand M; Makarov S; Wald LL; Nummenmaa A
    Brain Stimul; 2023; 16(4):1021-1031. PubMed ID: 37307872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a Helmet-Shape Dual-Channel RF coil for brain imaging at 54 mT using inverse boundary element method.
    Meng F; Guo Y; Wei H; Xu Z
    J Magn Reson; 2024 Mar; 360():107636. PubMed ID: 38377783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An 8-channel RF coil array for carotid artery MR imaging in humans at 3 T.
    Hu X; Zhang L; Zhang X; Zhu H; Chen X; Zhang Y; Chung YC; Liu X; Zheng H; Li Y
    Med Phys; 2016 Apr; 43(4):1897. PubMed ID: 27036585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid development of application-specific flexible MRI receive coils.
    Collick BD; Behzadnezhad B; Hurley SA; Mathew NK; Behdad N; Lindsay SA; Robb F; Stormont RS; McMillan AB
    Phys Med Biol; 2020 Sep; 65(19):19NT01. PubMed ID: 32975219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.