These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
9. Interaction-driven distinctive electronic states of artificial atoms at the ZnO interface. Chakraborty T; Manaselyan A; Barseghyan M J Phys Condens Matter; 2017 Jun; 29(21):215301. PubMed ID: 28437254 [TBL] [Abstract][Full Text] [Related]
10. Orbital occupation in electron-charged CdSe quantum-dot solids. Houtepen AJ; Vanmaekelbergh D J Phys Chem B; 2005 Oct; 109(42):19634-42. PubMed ID: 16853539 [TBL] [Abstract][Full Text] [Related]
11. Valence band structure of the Si(331)-(12 × 1) surface reconstruction. Battaglia C; Schwier EF; Monney C; Didiot C; Mariotti N; Gaál-Nagy K; Onida G; Gunnar Garnier M; Aebi P J Phys Condens Matter; 2011 Apr; 23(13):135003. PubMed ID: 21403242 [TBL] [Abstract][Full Text] [Related]
12. Coherently-enabled environmental control of optics and energy transfer pathways of hybrid quantum dot-metallic nanoparticle systems. Hatef A; Sadeghi SM; Fortin-Deschênes S; Boulais E; Meunier M Opt Express; 2013 Mar; 21(5):5643-53. PubMed ID: 23482138 [TBL] [Abstract][Full Text] [Related]
13. Crossover from 'mesoscopic' to 'universal' phase for electron transmission in quantum dots. Avinun-Kalish M; Heiblum M; Zarchin O; Mahalu D; Umansky V Nature; 2005 Jul; 436(7050):529-33. PubMed ID: 16049482 [TBL] [Abstract][Full Text] [Related]
14. Long-range transport in an assembly of ZnO quantum dots: the effects of quantum confinement, Coulomb repulsion and structural disorder. Roest AL; Germeau A; Kelly JJ; Vanmaekelbergh D; Allan G; Meulenkamp EA Chemphyschem; 2003 Sep; 4(9):959-66. PubMed ID: 14562441 [TBL] [Abstract][Full Text] [Related]
15. Ge quantum dot memory structure with laterally ordered highly dense arrays of Ge dots. Nassiopoulou AG; Olzierski A; Tsoi E; Berbezier I; Karmous A J Nanosci Nanotechnol; 2007 Jan; 7(1):316-21. PubMed ID: 17455497 [TBL] [Abstract][Full Text] [Related]
16. A theoretical study of exciton energy levels in laterally coupled quantum dots. Barticevic Z; Pacheco M; Duque CA; Oliveira LE J Phys Condens Matter; 2009 Oct; 21(40):405801. PubMed ID: 21832423 [TBL] [Abstract][Full Text] [Related]
17. Dirac electrons in graphene-based quantum wires and quantum dots. Peres NM; Rodrigues JN; Stauber T; Lopes Dos Santos JM J Phys Condens Matter; 2009 Aug; 21(34):344202. PubMed ID: 21715777 [TBL] [Abstract][Full Text] [Related]
18. Subnanometer size uncapped quantum dots via electroporation of synthetic vesicles. Schelly ZA Colloids Surf B Biointerfaces; 2007 Apr; 56(1-2):281-4. PubMed ID: 17140775 [TBL] [Abstract][Full Text] [Related]
19. Tailoring the optical gap of silicon quantum dots without changing their size. Li H; Wu Z; Zhou T; Sellinger A; Lusk MT Phys Chem Chem Phys; 2014 Sep; 16(36):19275-81. PubMed ID: 25098607 [TBL] [Abstract][Full Text] [Related]
20. Aggregated CdS quantum dots: Host of biomolecular ligands. Narayanan SS; Pal SK J Phys Chem B; 2006 Dec; 110(48):24403-9. PubMed ID: 17134194 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]