These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 23697158)

  • 41. In situ generation of pH gradients in microfluidic devices for biofabrication of freestanding, semi-permeable chitosan membranes.
    Luo X; Berlin DL; Betz J; Payne GF; Bentley WE; Rubloff GW
    Lab Chip; 2010 Jan; 10(1):59-65. PubMed ID: 20024051
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dielectrophoretic platforms for bio-microfluidic systems.
    Khoshmanesh K; Nahavandi S; Baratchi S; Mitchell A; Kalantar-zadeh K
    Biosens Bioelectron; 2011 Jan; 26(5):1800-14. PubMed ID: 20933384
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characterisation of surface wettability based on nanoparticles.
    Gao N; Yan Y
    Nanoscale; 2012 Apr; 4(7):2202-18. PubMed ID: 22392411
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Student's corner. Undergraduate student successfully invents artificial Golgi.
    Linte CA
    IEEE Eng Med Biol Mag; 2008; 27(5):9-10. PubMed ID: 18799383
    [No Abstract]   [Full Text] [Related]  

  • 45. Bacterial polyhydroxyalkanoate granules: biogenesis, structure, and potential use as nano-/micro-beads in biotechnological and biomedical applications.
    Grage K; Jahns AC; Parlane N; Palanisamy R; Rasiah IA; Atwood JA; Rehm BH
    Biomacromolecules; 2009 Apr; 10(4):660-9. PubMed ID: 19275166
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Biomimetic nanopores: learning from and about nature.
    Kowalczyk SW; Blosser TR; Dekker C
    Trends Biotechnol; 2011 Dec; 29(12):607-14. PubMed ID: 21871679
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Microcantilever-based platforms as biosensing tools.
    Alvarez M; Lechuga LM
    Analyst; 2010 May; 135(5):827-36. PubMed ID: 20419229
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Viruses: making friends with old foes.
    Douglas T; Young M
    Science; 2006 May; 312(5775):873-5. PubMed ID: 16690856
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Design, fabrication and characterization of nano-filters in silicon microfluidic channels based on MEMS technology.
    Chen X; Cui D; Chen J
    Electrophoresis; 2009 Sep; 30(18):3168-73. PubMed ID: 19722199
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A microfluidic concentrator array for quantitative predation assays of predatory microbes.
    Park S; Kim D; Mitchell RJ; Kim T
    Lab Chip; 2011 Sep; 11(17):2916-23. PubMed ID: 21761042
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Micro and nanotechnological tools for study of RNA.
    Yoshizawa S
    Biochimie; 2012 Jul; 94(7):1588-94. PubMed ID: 22484393
    [TBL] [Abstract][Full Text] [Related]  

  • 52. BioMEMS: state-of-the-art in detection, opportunities and prospects.
    Bashir R
    Adv Drug Deliv Rev; 2004 Sep; 56(11):1565-86. PubMed ID: 15350289
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Controlled rotation of biological micro- and nano-particles in microvortices.
    Shelby JP; Chiu DT
    Lab Chip; 2004 Jun; 4(3):168-70. PubMed ID: 15159772
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Micro-scale and microfluidic devices for neurobiology.
    Taylor AM; Jeon NL
    Curr Opin Neurobiol; 2010 Oct; 20(5):640-7. PubMed ID: 20739175
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Molecular biomimetics: GEPI-based biological routes to technology.
    Tamerler C; Khatayevich D; Gungormus M; Kacar T; Oren EE; Hnilova M; Sarikaya M
    Biopolymers; 2010; 94(1):78-94. PubMed ID: 20091881
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biomimetic behavior of synthetic particles: from microscopic randomness to macroscopic control.
    Hong Y; Velegol D; Chaturvedi N; Sen A
    Phys Chem Chem Phys; 2010 Feb; 12(7):1423-35. PubMed ID: 20126754
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A microfluidic-based hydrodynamic trap: design and implementation.
    Tanyeri M; Ranka M; Sittipolkul N; Schroeder CM
    Lab Chip; 2011 May; 11(10):1786-94. PubMed ID: 21479293
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Micro total analysis system (micro-TAS) in biotechnology.
    Lee SJ; Lee SY
    Appl Microbiol Biotechnol; 2004 Apr; 64(3):289-99. PubMed ID: 14714150
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Towards lab-on-a-chip approaches in real analytical domains based on microfluidic chips/electrochemical multi-walled carbon nanotube platforms.
    Crevillén AG; Pumera M; González MC; Escarpa A
    Lab Chip; 2009 Jan; 9(2):346-53. PubMed ID: 19107295
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Spintronic platforms for biomedical applications.
    Freitas PP; Cardoso FA; Martins VC; Martins SA; Loureiro J; Amaral J; Chaves RC; Cardoso S; Fonseca LP; Sebastião AM; Pannetier-Lecoeur M; Fermon C
    Lab Chip; 2012 Feb; 12(3):546-57. PubMed ID: 22146898
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.