BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 23697375)

  • 1. Quantum mechanical calculations of xanthophyll-chlorophyll electronic coupling in the light-harvesting antenna of photosystem II of higher plants.
    Duffy CD; Valkunas L; Ruban AV
    J Phys Chem B; 2013 Jun; 117(25):7605-14. PubMed ID: 23697375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A theoretical investigation of xanthophyll-protein hydrogen bonding in the photosystem II antenna.
    Duffy CD; Ruban AV
    J Phys Chem B; 2012 Apr; 116(14):4310-8. PubMed ID: 22439795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional architecture of the major light-harvesting complex from higher plants.
    Formaggio E; Cinque G; Bassi R
    J Mol Biol; 2001 Dec; 314(5):1157-66. PubMed ID: 11743731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Xanthophylls as modulators of membrane protein function.
    Ruban AV; Johnson MP
    Arch Biochem Biophys; 2010 Dec; 504(1):78-85. PubMed ID: 20615387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in the energy transfer pathways within photosystem II antenna induced by xanthophyll cycle activity.
    Ilioaia C; Duffy CD; Johnson MP; Ruban AV
    J Phys Chem B; 2013 May; 117(19):5841-7. PubMed ID: 23597158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Xanthophyll-induced aggregation of LHCII as a switch between light-harvesting and energy dissipation systems.
    Gruszecki WI; Grudzinski W; Gospodarek M; Patyra M; Maksymiec W
    Biochim Biophys Acta; 2006 Nov; 1757(11):1504-11. PubMed ID: 16978579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Architecture of a charge-transfer state regulating light harvesting in a plant antenna protein.
    Ahn TK; Avenson TJ; Ballottari M; Cheng YC; Niyogi KK; Bassi R; Fleming GR
    Science; 2008 May; 320(5877):794-7. PubMed ID: 18467588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic modeling of charge-transfer quenching in the CP29 minor complex.
    Cheng YC; Ahn TK; Avenson TJ; Zigmantas D; Niyogi KK; Ballottari M; Bassi R; Fleming GR
    J Phys Chem B; 2008 Oct; 112(42):13418-23. PubMed ID: 18826191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The xanthophyll cycle pigments, violaxanthin and zeaxanthin, modulate molecular organization of the photosynthetic antenna complex LHCII.
    Janik E; Bednarska J; Zubik M; Sowinski K; Luchowski R; Grudzinski W; Matosiuk D; Gruszecki WI
    Arch Biochem Biophys; 2016 Feb; 592():1-9. PubMed ID: 26773208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carotenoids as a shortcut for chlorophyll Soret-to-Q band energy flow.
    Götze JP; Kröner D; Banerjee S; Karasulu B; Thiel W
    Chemphyschem; 2014 Oct; 15(15):3392-401. PubMed ID: 25179982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A specific binding site for neoxanthin in the monomeric antenna proteins CP26 and CP29 of Photosystem II.
    Caffarri S; Passarini F; Bassi R; Croce R
    FEBS Lett; 2007 Oct; 581(24):4704-10. PubMed ID: 17850797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Properties of zeaxanthin and its radical cation bound to the minor light-harvesting complexes CP24, CP26 and CP29.
    Amarie S; Wilk L; Barros T; Kühlbrandt W; Dreuw A; Wachtveitl J
    Biochim Biophys Acta; 2009 Jun; 1787(6):747-52. PubMed ID: 19248759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light absorption by the chlorophyll a-b complexes of photosystem II in a leaf with special reference to LHCII.
    Rivadossi A; Zucchelli G; Garlaschi FM; Jennings RC
    Photochem Photobiol; 2004; 80(3):492-8. PubMed ID: 15623336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling of a violaxanthin-chlorophyll b chromophore pair in its LHCII environment using CAM-B3LYP.
    Kröner D; Götze JP
    J Photochem Photobiol B; 2012 Apr; 109():12-9. PubMed ID: 22306026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of the stoichiometry and strength of binding of xanthophylls to the photosystem II light harvesting complexes.
    Ruban AV; Lee PJ; Wentworth M; Young AJ; Horton P
    J Biol Chem; 1999 Apr; 274(15):10458-65. PubMed ID: 10187836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light-modulated exposure of the light-harvesting complex II (LHCII) to protein kinase(s) and state transition in Chlamydomonas reinhardtii xanthophyll mutants.
    Vink M; Zer H; Alumot N; Gaathon A; Niyogi K; Herrmann RG; Andersson B; Ohad I
    Biochemistry; 2004 Jun; 43(24):7824-33. PubMed ID: 15196025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of 13-cis violaxanthin on organization of light harvesting complex II in monomolecular layers.
    Grudziński W; Matuła M; Sielewiesiuk J; Kernen P; Krupa Z; Gruszecki WI
    Biochim Biophys Acta; 2001 Jan; 1503(3):291-302. PubMed ID: 11115641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distortions of the Xanthophylls Caused by Interactions with Neighboring Pigments and the LHCII Protein Are Crucial for Studying Energy Transfer Pathways within the Complex.
    Fox KF; Bricker WP; Lo C; Duffy CD
    J Phys Chem B; 2015 Dec; 119(51):15550-60. PubMed ID: 26618544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromophore organization in the higher-plant photosystem II antenna protein CP26.
    Croce R; Canino G; Ros F; Bassi R
    Biochemistry; 2002 Jun; 41(23):7334-43. PubMed ID: 12044165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum coherence enabled determination of the energy landscape in light-harvesting complex II.
    Calhoun TR; Ginsberg NS; Schlau-Cohen GS; Cheng YC; Ballottari M; Bassi R; Fleming GR
    J Phys Chem B; 2009 Dec; 113(51):16291-5. PubMed ID: 20014871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.