These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 23697403)

  • 1. Non-linear eigensolver-based alternative to traditional SCF methods.
    Gavin B; Polizzi E
    J Chem Phys; 2013 May; 138(19):194101. PubMed ID: 23697403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parallel self-consistent-field calculations via Chebyshev-filtered subspace acceleration.
    Zhou Y; Saad Y; Tiago ML; Chelikowsky JR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 2):066704. PubMed ID: 17280174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Algorithms for the electronic and vibrational properties of nanocrystals.
    Chelikowsky JR; Zayak AT; Chan TL; Tiago ML; Zhou Y; Saad Y
    J Phys Condens Matter; 2009 Feb; 21(6):064207. PubMed ID: 21715910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pseudodiagonalization Method for Accelerating Nonlinear Subspace Diagonalization in Density Functional Theory.
    Shah S; Suryanarayana P; Chow E
    J Chem Theory Comput; 2022 Jun; 18(6):3474-3482. PubMed ID: 35608960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linear-scaling implementation of molecular electronic self-consistent field theory.
    Sałek P; Høst S; Thøgersen L; Jørgensen P; Manninen P; Olsen J; Jansík B; Reine S; Pawłowski F; Tellgren E; Helgaker T; Coriani S
    J Chem Phys; 2007 Mar; 126(11):114110. PubMed ID: 17381199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Projected Commutator DIIS Method for Accelerating Hybrid Functional Electronic Structure Calculations.
    Hu W; Lin L; Yang C
    J Chem Theory Comput; 2017 Nov; 13(11):5458-5467. PubMed ID: 28937762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SIESTA-PEXSI: massively parallel method for efficient and accurate ab initio materials simulation without matrix diagonalization.
    Lin L; García A; Huhs G; Yang C
    J Phys Condens Matter; 2014 Jul; 26(30):305503. PubMed ID: 25007803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear algorithm for the solution of the Kohn-Sham equations in solids.
    Wang J; Wang Y; Yu S; Kolb D
    J Phys Condens Matter; 2005 Jun; 17(25):3701-15. PubMed ID: 21690691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ab initio electronic structure calculations using a real-space Chebyshev-filtered subspace iteration method.
    Xu Q; Wang S; Xue L; Shao X; Gao P; Lv J; Wang Y; Ma Y
    J Phys Condens Matter; 2019 Nov; 31(45):455901. PubMed ID: 31207590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Communication: Linear-expansion shooting techniques for accelerating self-consistent field convergence.
    Wang YA; Yam CY; Chen YK; Chen G
    J Chem Phys; 2011 Jun; 134(24):241103. PubMed ID: 21721605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Representation independent algorithms for molecular response calculations in time-dependent self-consistent field theories.
    Tretiak S; Isborn CM; Niklasson AM; Challacombe M
    J Chem Phys; 2009 Feb; 130(5):054111. PubMed ID: 19206962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of density matrix methods for linear scaling electronic structure calculations.
    Rudberg E; Rubensson EH
    J Phys Condens Matter; 2011 Feb; 23(7):075502. PubMed ID: 21411885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient exact-exchange time-dependent density-functional theory methods and their relation to time-dependent Hartree-Fock.
    Hesselmann A; Görling A
    J Chem Phys; 2011 Jan; 134(3):034120. PubMed ID: 21261343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A ground-state-directed optimization scheme for the Kohn-Sham energy.
    Høst S; Jansík B; Olsen J; Jørgensen P; Reine S; Helgaker T
    Phys Chem Chem Phys; 2008 Sep; 10(35):5344-8. PubMed ID: 18766229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of Initial Guesses for Self-Consistent Field Calculations. Superposition of Atomic Potentials: Simple yet Efficient.
    Lehtola S
    J Chem Theory Comput; 2019 Mar; 15(3):1593-1604. PubMed ID: 30653322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linear-scaling implementation of molecular response theory in self-consistent field electronic-structure theory.
    Coriani S; Høst S; Jansík B; Thøgersen L; Olsen J; Jørgensen P; Reine S; Pawłowski F; Helgaker T; Sałek P
    J Chem Phys; 2007 Apr; 126(15):154108. PubMed ID: 17461615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An efficient and stable hybrid extended Lagrangian/self-consistent field scheme for solving classical mutual induction.
    Albaugh A; Demerdash O; Head-Gordon T
    J Chem Phys; 2015 Nov; 143(17):174104. PubMed ID: 26547155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sparse Projected-Gradient Method As a Linear-Scaling Low-Memory Alternative to Diagonalization in Self-Consistent Field Electronic Structure Calculations.
    Birgin EG; Martınez JM; Martınez L; Rocha GB
    J Chem Theory Comput; 2013 Feb; 9(2):1043-51. PubMed ID: 26588747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The ELPA library: scalable parallel eigenvalue solutions for electronic structure theory and computational science.
    Marek A; Blum V; Johanni R; Havu V; Lang B; Auckenthaler T; Heinecke A; Bungartz HJ; Lederer H
    J Phys Condens Matter; 2014 May; 26(21):213201. PubMed ID: 24786764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A diagonalization-free optimization algorithm for solving Kohn-Sham equations of closed-shell molecules.
    Mrovec M; Berger JA
    J Comput Chem; 2021 Mar; 42(7):492-504. PubMed ID: 33347643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.