These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 2369785)

  • 1. Activation of microsomal glutathione transferase activity by reactive intermediates formed during the metabolism of phenol.
    Wallin H; Morgenstern R
    Chem Biol Interact; 1990; 75(2):185-99. PubMed ID: 2369785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biotransformation of phenol to hydroquinone and catechol by rat liver microsomes.
    Sawahata T; Neal RA
    Mol Pharmacol; 1983 Mar; 23(2):453-60. PubMed ID: 6835203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benzene metabolism by reconstituted cytochromes P450 2B1 and 2E1 and its modulation by cytochrome b5, microsomal epoxide hydrolase, and glutathione transferases: evidence for an important role of microsomal epoxide hydrolase in the formation of hydroquinone.
    Snyder R; Chepiga T; Yang CS; Thomas H; Platt K; Oesch F
    Toxicol Appl Pharmacol; 1993 Oct; 122(2):172-81. PubMed ID: 8211999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Covalent binding of benzene and its metabolites to DNA in rabbit bone marrow mitochondria in vitro.
    Rushmore T; Snyder R; Kalf G
    Chem Biol Interact; 1984 Apr; 49(1-2):133-54. PubMed ID: 6202430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection and identification of sulfhydryl conjugates of rho-benzoquinone in microsomal incubations of benzene and phenol.
    Lunte SM; Kissinger PT
    Chem Biol Interact; 1983 Nov; 47(2):195-212. PubMed ID: 6652808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence that covalent binding of metabolically activated phenol to microsomal proteins is caused by oxidised products of hydroquinone and catechol.
    Wallin H; Melin P; Schelin C; Jergil B
    Chem Biol Interact; 1985 Nov; 55(3):335-46. PubMed ID: 4075440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies on the activation of rat liver microsomal glutathione transferase in isolated hepatocytes.
    Lundqvist G; Morgenstern R
    Biochem Pharmacol; 1992 Jan; 43(2):131-5. PubMed ID: 1739400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DT-diaphorase and peroxidase influence the covalent binding of the metabolites of phenol, the major metabolite of benzene.
    Smart RC; Zannoni VG
    Mol Pharmacol; 1984 Jul; 26(1):105-11. PubMed ID: 6749127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The inhibition of mitochondrial DNA replication in vitro by the metabolites of benzene, hydroquinone and p-benzoquinone.
    Schwartz CS; Snyder R; Kalf GF
    Chem Biol Interact; 1985 May; 53(3):327-50. PubMed ID: 4006011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of activation of rat liver microsomal glutathione transferase by noradrenaline and xanthine oxidase.
    Lundqvist G; Morgenstern R
    Biochem Pharmacol; 1992 Apr; 43(8):1725-8. PubMed ID: 1575769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of 1,4-benzoquinone and 2,4-dichlorophenoxyacetic acid with microsomal glutathione transferase from rat liver.
    Dierickx PJ
    Arch Int Physiol Biochim; 1988 Mar; 96(1):1-5. PubMed ID: 2460044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of rat liver microsomal glutathione S-transferase by hydrogen peroxide: role for protein-dimer formation.
    Aniya Y; Anders MW
    Arch Biochem Biophys; 1992 Aug; 296(2):611-6. PubMed ID: 1632648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA damage in L5178YS cells following exposure to benzene metabolites.
    Pellack-Walker P; Blumer JL
    Mol Pharmacol; 1986 Jul; 30(1):42-7. PubMed ID: 3724744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increase in liver microsomal glutathione S-transferase activity by phenobarbital treatment of rats. Possible involvement of oxidative activation via cytochrome P450.
    Aniya Y; Shimoji M; Naito A
    Biochem Pharmacol; 1993 Nov; 46(10):1741-7. PubMed ID: 8250959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative studies of the in vitro metabolism and covalent binding of 14C-benzene by liver slices and microsomal fraction of mouse, rat, and human.
    Brodfuehrer JI; Chapman DE; Wilke TJ; Powis G
    Drug Metab Dispos; 1990; 18(1):20-7. PubMed ID: 1970773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of liver microsomal glutathione S-transferase activity by heating.
    Aniya Y
    J Pharmacobiodyn; 1989 Apr; 12(4):235-40. PubMed ID: 2795433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of rat liver microsomal glutathione S-transferase activity by thiol/disulfide exchange.
    Aniya Y; Anders MW
    Arch Biochem Biophys; 1989 Apr; 270(1):330-4. PubMed ID: 2930195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence that rat liver microsomal glutathione transferase is responsible for glutathione-dependent protection against lipid peroxidation.
    Mosialou E; Ekström G; Adang AE; Morgenstern R
    Biochem Pharmacol; 1993 Apr; 45(8):1645-51. PubMed ID: 8484804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of rat liver microsomal glutathione S-transferase by reduced oxygen species.
    Aniya Y; Anders MW
    J Biol Chem; 1989 Feb; 264(4):1998-2002. PubMed ID: 2492517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An interaction of benzene metabolites reproduces the myelotoxicity observed with benzene exposure.
    Eastmond DA; Smith MT; Irons RD
    Toxicol Appl Pharmacol; 1987 Oct; 91(1):85-95. PubMed ID: 2823417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.