BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 23698001)

  • 1. Structure and kinetic analysis of H2S production by human mercaptopyruvate sulfurtransferase.
    Yadav PK; Yamada K; Chiku T; Koutmos M; Banerjee R
    J Biol Chem; 2013 Jul; 288(27):20002-13. PubMed ID: 23698001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mercaptopyruvate sulfurtransferase of Trichomonas vaginalis links cysteine catabolism to the production of thioredoxin persulfide.
    Westrop GD; Georg I; Coombs GH
    J Biol Chem; 2009 Nov; 284(48):33485-94. PubMed ID: 19762467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Post-translational regulation of mercaptopyruvate sulfurtransferase via a low redox potential cysteine-sulfenate in the maintenance of redox homeostasis.
    Nagahara N; Katayama A
    J Biol Chem; 2005 Oct; 280(41):34569-76. PubMed ID: 16107337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thioredoxin and dihydrolipoic acid are required for 3-mercaptopyruvate sulfurtransferase to produce hydrogen sulfide.
    Mikami Y; Shibuya N; Kimura Y; Nagahara N; Ogasawara Y; Kimura H
    Biochem J; 2011 Nov; 439(3):479-85. PubMed ID: 21732914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox regulation of mammalian 3-mercaptopyruvate sulfurtransferase.
    Nagahara N; Nagano M; Ito T; Suzuki H
    Methods Enzymol; 2015; 554():229-54. PubMed ID: 25725525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thioredoxin regulates human mercaptopyruvate sulfurtransferase at physiologically-relevant concentrations.
    Yadav PK; Vitvitsky V; Carballal S; Seravalli J; Banerjee R
    J Biol Chem; 2020 May; 295(19):6299-6311. PubMed ID: 32179647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mercaptopyruvate acts as endogenous vasodilator independently of 3-mercaptopyruvate sulfurtransferase activity.
    Mitidieri E; Tramontano T; Gurgone D; Citi V; Calderone V; Brancaleone V; Katsouda A; Nagahara N; Papapetropoulos A; Cirino G; d'Emmanuele di Villa Bianca R; Sorrentino R
    Nitric Oxide; 2018 May; 75():53-59. PubMed ID: 29452248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alternative pathway of H
    Nagahara N; Koike S; Nirasawa T; Kimura H; Ogasawara Y
    Biochem Biophys Res Commun; 2018 Feb; 496(2):648-653. PubMed ID: 29331374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of mercaptopyruvate sulfurtransferase activity via intrasubunit and intersubunit redox-sensing switches.
    Nagahara N
    Antioxid Redox Signal; 2013 Nov; 19(15):1792-802. PubMed ID: 23146073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arabidopsis thaliana 3-mercaptopyruvate sulfurtransferases interact with and are protected by reducing systems.
    Moseler A; Dhalleine T; Rouhier N; Couturier J
    J Biol Chem; 2021; 296():100429. PubMed ID: 33609525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Is novel signal transducer sulfur oxide involved in the redox cycle of persulfide at the catalytic site cysteine in a stable reaction intermediate of mercaptopyruvate sulfurtransferase?
    Nagahara N; Nirasawa T; Yoshii T; Niimura Y
    Antioxid Redox Signal; 2012 Apr; 16(8):747-53. PubMed ID: 22149235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thioredoxin-dependent enzymatic activation of mercaptopyruvate sulfurtransferase. An intersubunit disulfide bond serves as a redox switch for activation.
    Nagahara N; Yoshii T; Abe Y; Matsumura T
    J Biol Chem; 2007 Jan; 282(3):1561-9. PubMed ID: 17130129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3-Mercaptopyruvate sulfurtransferase/hydrogen sulfide protects cerebral endothelial cells against oxygen-glucose deprivation/reoxygenation-induced injury via mitoprotection and inhibition of the RhoA/ROCK pathway.
    Zhang F; Chen S; Wen JY; Chen ZW
    Am J Physiol Cell Physiol; 2020 Oct; 319(4):C720-C733. PubMed ID: 32813542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Production of H
    Shibuya N
    Nihon Yakurigaku Zasshi; 2018; 152(5):216-222. PubMed ID: 30393252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytosolic mercaptopyruvate sulfurtransferase is evolutionarily related to mitochondrial rhodanese. Striking similarity in active site amino acid sequence and the increase in the mercaptopyruvate sulfurtransferase activity of rhodanese by site-directed mutagenesis.
    Nagahara N; Okazaki T; Nishino T
    J Biol Chem; 1995 Jul; 270(27):16230-5. PubMed ID: 7608189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3-Mercaptopyruvate sulfurtransferase produces potential redox regulators cysteine- and glutathione-persulfide (Cys-SSH and GSSH) together with signaling molecules H
    Kimura Y; Koike S; Shibuya N; Lefer D; Ogasawara Y; Kimura H
    Sci Rep; 2017 Sep; 7(1):10459. PubMed ID: 28874874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of Vascular Tone, Angiogenesis and Cellular Bioenergetics by the 3-Mercaptopyruvate Sulfurtransferase/H2S Pathway: Functional Impairment by Hyperglycemia and Restoration by DL-α-Lipoic Acid.
    Coletta C; Módis K; Szczesny B; Brunyánszki A; Oláh G; Rios EC; Yanagi K; Ahmad A; Papapetropoulos A; Szabo C
    Mol Med; 2015 Feb; 21(1):1-14. PubMed ID: 25715337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative stress suppresses the cellular bioenergetic effect of the 3-mercaptopyruvate sulfurtransferase/hydrogen sulfide pathway.
    Módis K; Asimakopoulou A; Coletta C; Papapetropoulos A; Szabo C
    Biochem Biophys Res Commun; 2013 Apr; 433(4):401-7. PubMed ID: 23537657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The crystal structure of Leishmania major 3-mercaptopyruvate sulfurtransferase. A three-domain architecture with a serine protease-like triad at the active site.
    Alphey MS; Williams RA; Mottram JC; Coombs GH; Hunter WN
    J Biol Chem; 2003 Nov; 278(48):48219-27. PubMed ID: 12952945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thiosulfate sulfurtransferase-like domain-containing 1 protein interacts with thioredoxin.
    Libiad M; Motl N; Akey DL; Sakamoto N; Fearon ER; Smith JL; Banerjee R
    J Biol Chem; 2018 Feb; 293(8):2675-2686. PubMed ID: 29348167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.