These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Biomechanical assessment of a PEEK rod system for semi-rigid fixation of lumbar fusion constructs. Gornet MF; Chan FW; Coleman JC; Murrell B; Nockels RP; Taylor BA; Lanman TH; Ochoa JA J Biomech Eng; 2011 Aug; 133(8):081009. PubMed ID: 21950902 [TBL] [Abstract][Full Text] [Related]
3. Biomechanics of polyaryletherketone rod composites and titanium rods for posterior lumbosacral instrumentation. Presented at the 2010 Joint Spine Section Meeting. Laboratory investigation. Bruner HJ; Guan Y; Yoganandan N; Pintar FA; Maiman DJ; Slivka MA J Neurosurg Spine; 2010 Dec; 13(6):766-72. PubMed ID: 21121756 [TBL] [Abstract][Full Text] [Related]
4. Mechanical Analysis of Notch-Free Pre-Bent Rods for Spinal Deformity Surgery. Yamada K; Sudo H; Iwasaki N; Chiba A Spine (Phila Pa 1976); 2020 Mar; 45(6):E312-E318. PubMed ID: 31574057 [TBL] [Abstract][Full Text] [Related]
5. In vitro comparison of bioresorbable and titanium anterior cervical plates in the immediate postoperative condition. Freeman AL; Derincek A; Beaubien BP; Buttermann GR; Lew WD; Wood KB J Spinal Disord Tech; 2006 Dec; 19(8):577-83. PubMed ID: 17146301 [TBL] [Abstract][Full Text] [Related]
6. The effects of rod contouring on spinal construct fatigue strength. Lindsey C; Deviren V; Xu Z; Yeh RF; Puttlitz CM Spine (Phila Pa 1976); 2006 Jul; 31(15):1680-7. PubMed ID: 16816763 [TBL] [Abstract][Full Text] [Related]
7. Design and 3D printing of novel titanium spine rods with lower flexural modulus and stiffness profile with optimised imaging compatibility. Kumar N; Alathur Ramakrishnan S; Lopez KG; Wang N; Madhu S; Vellayappan BA; Tpd Hallinan J; Fuh JYH; Kumar AS Eur Spine J; 2023 Jun; 32(6):1953-1965. PubMed ID: 37052651 [TBL] [Abstract][Full Text] [Related]
8. Reduction of intradiscal pressure by the use of polycarbonate-urethane rods as compared to titanium rods in posterior thoracolumbar spinal fixation. Jacobs E; Roth AK; Arts JJ; van Rhijn LW; Willems PC J Mater Sci Mater Med; 2017 Aug; 28(10):148. PubMed ID: 28828753 [TBL] [Abstract][Full Text] [Related]
9. Biomechanical evaluation and comparison of polyetheretherketone rod system to traditional titanium rod fixation. Ponnappan RK; Serhan H; Zarda B; Patel R; Albert T; Vaccaro AR Spine J; 2009 Mar; 9(3):263-7. PubMed ID: 18838341 [TBL] [Abstract][Full Text] [Related]
10. Assessment of the suitability of biodegradable rods for use in posterior lumbar fusion: An in-vitro biomechanical evaluation and finite element analysis. Tsuang FY; Hsieh YY; Kuo YJ; Chen CH; Lin FH; Chen CS; Chiang CJ PLoS One; 2017; 12(11):e0188034. PubMed ID: 29145437 [TBL] [Abstract][Full Text] [Related]
11. Mechanical testing of bioresorbable implants for use in metacarpal fracture fixation. Bozic KJ; Perez LE; Wilson DR; Fitzgibbons PG; Jupiter JB J Hand Surg Am; 2001 Jul; 26(4):755-61. PubMed ID: 11466654 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of bioabsorbable multiamino acid copolymer/α-tri-calcium phosphate interbody fusion cages in a goat model. Chunguang Z; Yueming S; Chongqi T; Hong D; Fuxing P; Yonggang Y; Hong L Spine (Phila Pa 1976); 2011 Dec; 36(25):E1615-22. PubMed ID: 21270683 [TBL] [Abstract][Full Text] [Related]
13. Influence of Rod Contouring on Rod Strength and Stiffness in Spine Surgery. Demura S; Murakami H; Hayashi H; Kato S; Yoshioka K; Yokogawa N; Ishii T; Igarashi T; Fang X; Tsuchiya H Orthopedics; 2015 Jun; 38(6):e520-3. PubMed ID: 26091226 [TBL] [Abstract][Full Text] [Related]
14. Comparison of the load-sharing characteristics between pedicle-based dynamic and rigid rod devices. Ahn YH; Chen WM; Lee KY; Park KW; Lee SJ Biomed Mater; 2008 Dec; 3(4):044101. PubMed ID: 19029615 [TBL] [Abstract][Full Text] [Related]
15. Biomechanical analysis between PEEK and titanium screw-rods spinal construct subjected to fatigue loading. Chou WK; Chien A; Wang JL J Spinal Disord Tech; 2015 Apr; 28(3):E121-5. PubMed ID: 25310399 [TBL] [Abstract][Full Text] [Related]
17. Mechanical property assessment of bone healing around a titanium-zirconium alloy dental implant. Anchieta RB; Baldassarri M; Guastaldi F; Tovar N; Janal MN; Gottlow J; Dard M; Jimbo R; Coelho PG Clin Implant Dent Relat Res; 2014 Dec; 16(6):913-9. PubMed ID: 23527994 [TBL] [Abstract][Full Text] [Related]
18. Mechanical Performance of Posterior Spinal Instrumentation and Growing Rod Implants: Experimental and Computational Study. Foltz MH; Freeman AL; Loughran G; Bechtold JE; Barocas VH; Ellingson AM; Polly DW Spine (Phila Pa 1976); 2019 Sep; 44(18):1270-1278. PubMed ID: 30994599 [TBL] [Abstract][Full Text] [Related]
19. Analysis of the Fracture Mechanism of Ti-6Al-4V Alloy Rods That Failed Clinically After Spinal Instrumentation Surgery. Yamanaka K; Mori M; Yamazaki K; Kumagai R; Doita M; Chiba A Spine (Phila Pa 1976); 2015 Jul; 40(13):E767-73. PubMed ID: 25785960 [TBL] [Abstract][Full Text] [Related]
20. Characterization methods of bone-implant-interfaces of bioresorbable and titanium implants by fracture mechanical means. Tschegg EK; Lindtner RA; Doblhoff-Dier V; Stanzl-Tschegg SE; Holzlechner G; Castellani C; Imwinkelried T; Weinberg A J Mech Behav Biomed Mater; 2011 Jul; 4(5):766-75. PubMed ID: 21565724 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]