These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 23698563)

  • 1. Hierarchical CuO nanoflowers: water-required synthesis and their application in a nonenzymatic glucose biosensor.
    Sun S; Zhang X; Sun Y; Yang S; Song X; Yang Z
    Phys Chem Chem Phys; 2013 Jul; 15(26):10904-13. PubMed ID: 23698563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile water-assisted synthesis of cupric oxide nanourchins and their application as nonenzymatic glucose biosensor.
    Sun S; Zhang X; Sun Y; Yang S; Song X; Yang Z
    ACS Appl Mater Interfaces; 2013 May; 5(10):4429-37. PubMed ID: 23629486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoporous copper oxide ribbon assembly of free-standing nanoneedles as biosensors for glucose.
    Sun S; Sun Y; Chen A; Zhang X; Yang Z
    Analyst; 2015 Aug; 140(15):5205-15. PubMed ID: 26057132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Archetypal sandwich-structured CuO for high performance non-enzymatic sensing of glucose.
    Meher SK; Rao GR
    Nanoscale; 2013 Mar; 5(5):2089-99. PubMed ID: 23381131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparing cuprous oxide nanomaterials by electrochemical method for non-enzymatic glucose biosensor.
    Nguyen TT; Huy BT; Hwang SY; Vuong NM; Pham QT; Nghia NN; Kirtland A; Lee YI
    Nanotechnology; 2018 May; 29(20):205501. PubMed ID: 29480163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D graphene foams decorated by CuO nanoflowers for ultrasensitive ascorbic acid detection.
    Ma Y; Zhao M; Cai B; Wang W; Ye Z; Huang J
    Biosens Bioelectron; 2014 Sep; 59():384-8. PubMed ID: 24755255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of graphene oxide based CuO nanoparticles composite electrode for highly enhanced nonenzymatic glucose detection.
    Song J; Xu L; Zhou C; Xing R; Dai Q; Liu D; Song H
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):12928-34. PubMed ID: 24182328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrothermal synthesis of CuO micro-/nanostructures and their applications in the oxidative degradation of methylene blue and non-enzymatic sensing of glucose/H2O2.
    Prathap MU; Kaur B; Srivastava R
    J Colloid Interface Sci; 2012 Mar; 370(1):144-54. PubMed ID: 22284573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode.
    Jiang LC; Zhang WD
    Biosens Bioelectron; 2010 Feb; 25(6):1402-7. PubMed ID: 19942424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tailoring CuO nanostructures for enhanced photocatalytic property.
    Liu J; Jin J; Deng Z; Huang SZ; Hu ZY; Wang L; Wang C; Chen LH; Li Y; Van Tendeloo G; Su BL
    J Colloid Interface Sci; 2012 Oct; 384(1):1-9. PubMed ID: 22818959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-enzymatic electrochemical CuO nanoflowers sensor for hydrogen peroxide detection.
    Song MJ; Hwang SW; Whang D
    Talanta; 2010 Mar; 80(5):1648-52. PubMed ID: 20152391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CuO nanowire/microflower/nanowire modified Cu electrode with enhanced electrochemical performance for non-enzymatic glucose sensing.
    Li C; Yamahara H; Lee Y; Tabata H; Delaunay JJ
    Nanotechnology; 2015 Jul; 26(30):305503. PubMed ID: 26159235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wide linear-range detecting nonenzymatic glucose biosensor based on CuO nanoparticles inkjet-printed on electrodes.
    Ahmad R; Vaseem M; Tripathy N; Hahn YB
    Anal Chem; 2013 Nov; 85(21):10448-54. PubMed ID: 24070377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical synthesis of flower-like hybrid Cu(OH)
    Shinde SK; Fulari VJ; Kim DY; Maile NC; Koli RR; Dhaygude HD; Ghodake GS
    Colloids Surf B Biointerfaces; 2017 Aug; 156():165-174. PubMed ID: 28528133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new method for fabricating a CuO/TiO2 nanotube arrays electrode and its application as a sensitive nonenzymatic glucose sensor.
    Luo S; Su F; Liu C; Li J; Liu R; Xiao Y; Li Y; Liu X; Cai Q
    Talanta; 2011 Oct; 86():157-63. PubMed ID: 22063525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonenzymatic amperometric determination of glucose by CuO nanocubes-graphene nanocomposite modified electrode.
    Luo L; Zhu L; Wang Z
    Bioelectrochemistry; 2012 Dec; 88():156-63. PubMed ID: 22522031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly sensitive nonenzymatic glucose sensor based on electrospun copper oxide-doped nickel oxide composite microfibers.
    Cao F; Guo S; Ma H; Yang G; Yang S; Gong J
    Talanta; 2011 Oct; 86():214-20. PubMed ID: 22063533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spherulitic copper-copper oxide nanostructure-based highly sensitive nonenzymatic glucose sensor.
    Das G; Tran TQ; Yoon HH
    Int J Nanomedicine; 2015; 10 Spec Iss(Spec Iss):165-78. PubMed ID: 26346651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Seed-mediated synthesis of copper nanoparticles on carbon nanotubes and their application in nonenzymatic glucose biosensors.
    Lu LM; Zhang XB; Shen GL; Yu RQ
    Anal Chim Acta; 2012 Feb; 715():99-104. PubMed ID: 22244173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonenzymatic glucose sensor based on CuO microfibers composed of CuO nanoparticles.
    Cao F; Gong J
    Anal Chim Acta; 2012 Apr; 723():39-44. PubMed ID: 22444571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.