BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 23698723)

  • 1. DRISEE overestimates errors in metagenomic sequencing data.
    Eren AM; Morrison HG; Huse SM; Sogin ML
    Brief Bioinform; 2014 Sep; 15(5):783-7. PubMed ID: 23698723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A platform-independent method for detecting errors in metagenomic sequencing data: DRISEE.
    Keegan KP; Trimble WL; Wilkening J; Wilke A; Harrison T; D'Souza M; Meyer F
    PLoS Comput Biol; 2012; 8(6):e1002541. PubMed ID: 22685393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of sequencing errors on metagenomic gene prediction.
    Hoff KJ
    BMC Genomics; 2009 Nov; 10():520. PubMed ID: 19909532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct comparisons of Illumina vs. Roche 454 sequencing technologies on the same microbial community DNA sample.
    Luo C; Tsementzi D; Kyrpides N; Read T; Konstantinidis KT
    PLoS One; 2012; 7(2):e30087. PubMed ID: 22347999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Piphillin predicts metagenomic composition and dynamics from DADA2-corrected 16S rDNA sequences.
    Narayan NR; Weinmaier T; Laserna-Mendieta EJ; Claesson MJ; Shanahan F; Dabbagh K; Iwai S; DeSantis TZ
    BMC Genomics; 2020 Jan; 21(1):56. PubMed ID: 31952477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scalable metagenomics alignment research tool (SMART): a scalable, rapid, and complete search heuristic for the classification of metagenomic sequences from complex sequence populations.
    Lee AY; Lee CS; Van Gelder RN
    BMC Bioinformatics; 2016 Jul; 17():292. PubMed ID: 27465705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. WebMGA: a customizable web server for fast metagenomic sequence analysis.
    Wu S; Zhu Z; Fu L; Niu B; Li W
    BMC Genomics; 2011 Sep; 12():444. PubMed ID: 21899761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of metagenomic assembly using simulated next generation sequencing data.
    Mende DR; Waller AS; Sunagawa S; Järvelin AI; Chan MM; Arumugam M; Raes J; Bork P
    PLoS One; 2012; 7(2):e31386. PubMed ID: 22384016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Small RNA Profiling by Next-Generation Sequencing Using High-Definition Adapters.
    Billmeier M; Xu P
    Methods Mol Biol; 2017; 1580():45-57. PubMed ID: 28439825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clinical Metagenomic Next-Generation Sequencing for Pathogen Detection.
    Gu W; Miller S; Chiu CY
    Annu Rev Pathol; 2019 Jan; 14():319-338. PubMed ID: 30355154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving the sensitivity of long read overlap detection using grouped short k-mer matches.
    Du N; Chen J; Sun Y
    BMC Genomics; 2019 Apr; 20(Suppl 2):190. PubMed ID: 30967123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. InteMAP: Integrated metagenomic assembly pipeline for NGS short reads.
    Lai B; Wang F; Wang X; Duan L; Zhu H
    BMC Bioinformatics; 2015 Aug; 16():244. PubMed ID: 26250558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reproducibility of Illumina platform deep sequencing errors allows accurate determination of DNA barcodes in cells.
    Beltman JB; Urbanus J; Velds A; van Rooij N; Rohr JC; Naik SH; Schumacher TN
    BMC Bioinformatics; 2016 Apr; 17():151. PubMed ID: 27038897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating metagenomics tools for genome binning with real metagenomic datasets and CAMI datasets.
    Yue Y; Huang H; Qi Z; Dou HM; Liu XY; Han TF; Chen Y; Song XJ; Zhang YH; Tu J
    BMC Bioinformatics; 2020 Jul; 21(1):334. PubMed ID: 32723290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparing a re-sequencing DNA library of 2 cancer candidate genes using the ligation-by-amplification protocol by two PCR reactions.
    Su Y; Lin L; Tian G; Chen C; Liu T; Xu X; Qi X; Zhang X; Yang H
    Sci China C Life Sci; 2009 May; 52(5):483-91. PubMed ID: 19471873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A viral metagenomic approach on a non-metagenomic experiment: Mining next generation sequencing datasets from pig DNA identified several porcine parvoviruses for a retrospective evaluation of viral infections.
    Bovo S; Mazzoni G; Ribani A; Utzeri VJ; Bertolini F; Schiavo G; Fontanesi L
    PLoS One; 2017; 12(6):e0179462. PubMed ID: 28662150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved pipeline for reducing erroneous identification by 16S rRNA sequences using the Illumina MiSeq platform.
    Jeon YS; Park SC; Lim J; Chun J; Kim BS
    J Microbiol; 2015 Jan; 53(1):60-9. PubMed ID: 25557481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ADEPT, a dynamic next generation sequencing data error-detection program with trimming.
    Feng S; Lo CC; Li PE; Chain PS
    BMC Bioinformatics; 2016 Feb; 17():109. PubMed ID: 26928302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systematic evaluation of error rates and causes in short samples in next-generation sequencing.
    Pfeiffer F; Gröber C; Blank M; Händler K; Beyer M; Schultze JL; Mayer G
    Sci Rep; 2018 Jul; 8(1):10950. PubMed ID: 30026539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of the cPAS-based BGISEQ-500 platform for metagenomic sequencing.
    Fang C; Zhong H; Lin Y; Chen B; Han M; Ren H; Lu H; Luber JM; Xia M; Li W; Stein S; Xu X; Zhang W; Drmanac R; Wang J; Yang H; Hammarström L; Kostic AD; Kristiansen K; Li J
    Gigascience; 2018 Mar; 7(3):1-8. PubMed ID: 29293960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.