These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 23699505)

  • 1. Balance of calcineurin Aα and CDK5 activities sets release probability at nerve terminals.
    Kim SH; Ryan TA
    J Neurosci; 2013 May; 33(21):8937-50. PubMed ID: 23699505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CDK5 serves as a major control point in neurotransmitter release.
    Kim SH; Ryan TA
    Neuron; 2010 Sep; 67(5):797-809. PubMed ID: 20826311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cdk5/p35 regulates neurotransmitter release through phosphorylation and downregulation of P/Q-type voltage-dependent calcium channel activity.
    Tomizawa K; Ohta J; Matsushita M; Moriwaki A; Li ST; Takei K; Matsui H
    J Neurosci; 2002 Apr; 22(7):2590-7. PubMed ID: 11923424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cdk5-mediated phosphorylation of CRMP-2 enhances its interaction with CaV2.2.
    Brittain JM; Wang Y; Eruvwetere O; Khanna R
    FEBS Lett; 2012 Nov; 586(21):3813-8. PubMed ID: 23022559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of Cyclin-dependent kinase 5 on voltage-dependent calcium channels in PC12 cells varies according to channel type and cell differentiation state.
    Furusawa K; Asada A; Saito T; Hisanaga S
    J Neurochem; 2014 Aug; 130(4):498-506. PubMed ID: 24766160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of N-type voltage-gated calcium channels and presynaptic function by cyclin-dependent kinase 5.
    Su SC; Seo J; Pan JQ; Samuels BA; Rudenko A; Ericsson M; Neve RL; Yue DT; Tsai LH
    Neuron; 2012 Aug; 75(4):675-87. PubMed ID: 22920258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A biochemical approach to study sub-second endogenous release of diverse neurotransmitters from central nerve terminals.
    Leenders AG; Hengst P; Lopes da Silva FH; Ghijsen WE
    J Neurosci Methods; 2002 Jan; 113(1):27-36. PubMed ID: 11741718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcineurin signaling mediates activity-dependent relocation of the axon initial segment.
    Evans MD; Sammons RP; Lebron S; Dumitrescu AS; Watkins TB; Uebele VN; Renger JJ; Grubb MS
    J Neurosci; 2013 Apr; 33(16):6950-63. PubMed ID: 23595753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Omega-agatoxin-TK is a useful tool to study P-type Ca2+ channel-mediated changes in internal Ca2+ and glutamate release in depolarised brain nerve terminals.
    Sitges M; Galindo CA
    Neurochem Int; 2005 Jan; 46(1):53-60. PubMed ID: 15567515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ca
    Chai Z; Wang C; Huang R; Wang Y; Zhang X; Wu Q; Wang Y; Wu X; Zheng L; Zhang C; Guo W; Xiong W; Ding J; Zhu F; Zhou Z
    Neuron; 2017 Dec; 96(6):1317-1326.e4. PubMed ID: 29198756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activity-dependent phosphorylation of neuronal Kv2.1 potassium channels by CDK5.
    Cerda O; Trimmer JS
    J Biol Chem; 2011 Aug; 286(33):28738-28748. PubMed ID: 21712386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurements of exocytosis from single presynaptic nerve terminals reveal heterogeneous inhibition by Ca(2+)-channel blockers.
    Reuter H
    Neuron; 1995 Apr; 14(4):773-9. PubMed ID: 7718239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dystonia-associated protein torsinA is not detectable at the nerve terminals of central neurons.
    Koh JY; Iwabuchi S; Harata NC
    Neuroscience; 2013 Dec; 253():316-29. PubMed ID: 24025868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Presynaptic calcium influx controls neurotransmitter release in part by regulating the effective size of the readily releasable pool.
    Thanawala MS; Regehr WG
    J Neurosci; 2013 Mar; 33(11):4625-33. PubMed ID: 23486937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of N- and L-type calcium channels in depolarization-induced activation of tyrosine hydroxylase and release of norepinephrine by sympathetic cell bodies and nerve terminals.
    Rittenhouse AR; Zigmond RE
    J Neurobiol; 1999 Aug; 40(2):137-48. PubMed ID: 10413445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fangchinoline inhibits glutamate release from rat cerebral cortex nerve terminals (synaptosomes).
    Lin TY; Lu CW; Tien LT; Chuang SH; Wang YR; Chang WH; Wang SJ
    Neurochem Int; 2009 Jul; 54(8):506-12. PubMed ID: 19428795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential Ca2+-dependence of transmitter release mediated by P/Q- and N-type calcium channels at neonatal rat neuromuscular junctions.
    Rosato-Siri MD; Piriz J; Tropper BA; Uchitel OD
    Eur J Neurosci; 2002 Jun; 15(12):1874-80. PubMed ID: 12099893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A small number of open Ca2+ channels trigger transmitter release at a central GABAergic synapse.
    Bucurenciu I; Bischofberger J; Jonas P
    Nat Neurosci; 2010 Jan; 13(1):19-21. PubMed ID: 20010820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in action potential duration alter reliance of excitatory synaptic transmission on multiple types of Ca2+ channels in rat hippocampus.
    Wheeler DB; Randall A; Tsien RW
    J Neurosci; 1996 Apr; 16(7):2226-37. PubMed ID: 8601803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The D(3) dopamine receptor inhibits dopamine release in PC-12/hD3 cells by autoreceptor signaling via PP-2B, CK1, and Cdk-5.
    Chen PC; Lao CL; Chen JC
    J Neurochem; 2009 Aug; 110(4):1180-90. PubMed ID: 19522735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.