BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 23699520)

  • 1. Blocking glutamate-mediated inferior olivary signals abolishes expression of conditioned eyeblinks but does not prevent their acquisition.
    Carrel AJ; Zenitsky GD; Bracha V
    J Neurosci; 2013 May; 33(21):9097-103. PubMed ID: 23699520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing the role of inferior olivary sensory signaling in the expression of conditioned eyeblinks using a combined glutamate/GABAA receptor antagonist protocol.
    Zbarska S; Bracha V
    J Neurophysiol; 2012 Jan; 107(1):273-82. PubMed ID: 21975449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inferior olivary inactivation abolishes conditioned eyeblinks: extinction or cerebellar malfunction?
    Zbarska S; Holland EA; Bloedel JR; Bracha V
    Behav Brain Res; 2007 Mar; 178(1):128-38. PubMed ID: 17222920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cerebellar dysfunction explains the extinction-like abolition of conditioned eyeblinks after NBQX injections in the inferior olive.
    Zbarska S; Bloedel JR; Bracha V
    J Neurosci; 2008 Jan; 28(1):10-20. PubMed ID: 18171918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glutamate neurotransmission in the cerebellar interposed nuclei: involvement in classically conditioned eyeblinks and neuronal activity.
    Aksenov DP; Serdyukova NA; Bloedel JR; Bracha V
    J Neurophysiol; 2005 Jan; 93(1):44-52. PubMed ID: 15331619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blocking GABAA neurotransmission in the interposed nuclei: effects on conditioned and unconditioned eyeblinks.
    Parker KL; Zbarska S; Carrel AJ; Bracha V
    Brain Res; 2009 Oct; 1292():25-37. PubMed ID: 19635470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lesions of the inferior olivary complex cause extinction of the classically conditioned eyeblink response.
    McCormick DA; Steinmetz JE; Thompson RF
    Brain Res; 1985 Dec; 359(1-2):120-30. PubMed ID: 4075140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A trigeminal conditioned stimulus yields fast acquisition of cerebellum-dependent conditioned eyeblinks.
    Carrel AJ; Zbarska S; Zenitsky GD; Bracha V
    Behav Brain Res; 2012 Jan; 226(1):189-96. PubMed ID: 21933685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extinction of conditioned blink responses by cerebello-olivary pathway stimulation.
    Bengtsson F; Jirenhed DA; Svensson P; Hesslow G
    Neuroreport; 2007 Sep; 18(14):1479-82. PubMed ID: 17712278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inactivation of cerebellar output axons impairs acquisition of conditioned eyeblinks.
    Nilaweera WU; Zenitsky GD; Bracha V
    Brain Res; 2006 Nov; 1122(1):143-53. PubMed ID: 17067561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of inferior olive lesion on fear-conditioned bradycardia.
    Kotajima H; Sakai K; Hashikawa T; Yanagihara D
    Neuroreport; 2014 May; 25(8):556-61. PubMed ID: 24784584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intermediate cerebellum and conditioned eyeblinks. Parallel involvement in eyeblinks and tonic eyelid closure.
    Bracha V; Zhao L; Irwin K; Bloedel JR
    Exp Brain Res; 2001 Jan; 136(1):41-9. PubMed ID: 11204412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. N-methyl-D-aspartate receptors play important roles in acquisition and expression of the eyeblink conditioned response in glutamate receptor subunit delta2 mutant mice.
    Kato Y; Takatsuki K; Kawahara S; Fukunaga S; Mori H; Mishina M; Kirino Y
    Neuroscience; 2005; 135(4):1017-23. PubMed ID: 16165299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unilateral inferior olive NMDA lesion leads to unilateral deficit in acquisition and retention of eyelid classical conditioning.
    Mintz M; Lavond DG; Zhang AA; Yun Y; Thompson RF
    Behav Neural Biol; 1994 May; 61(3):218-24. PubMed ID: 8067977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graded error signals in eyeblink conditioning.
    Rasmussen A
    Neurobiol Learn Mem; 2020 Apr; 170():107023. PubMed ID: 31028891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cerebellar mechanisms in eyeblink conditioning.
    Attwell PJ; Ivarsson M; Millar L; Yeo CH
    Ann N Y Acad Sci; 2002 Dec; 978():79-92. PubMed ID: 12582043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inactivation of the brachium conjunctivum prevents extinction of classically conditioned eyeblinks.
    Nilaweera WU; Zenitsky GD; Bracha V
    Brain Res; 2005 May; 1045(1-2):175-84. PubMed ID: 15910776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. N-methyl-D-aspartate receptors in associative eyeblink conditioning: both MK-801 and phencyclidine produce task- and dose-dependent impairments.
    Thompson LT; Disterhoft JF
    J Pharmacol Exp Ther; 1997 May; 281(2):928-40. PubMed ID: 9152403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The human cerebellum and associative learning: dissociation between the acquisition, retention and extinction of conditioned eyeblinks.
    Bracha V; Zhao L; Irwin KB; Bloedel JR
    Brain Res; 2000 Mar; 860(1-2):87-94. PubMed ID: 10727626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibitory cerebello-olivary projections and blocking effect in classical conditioning.
    Kim JJ; Krupa DJ; Thompson RF
    Science; 1998 Jan; 279(5350):570-3. PubMed ID: 9438852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.