These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 23700310)
1. Cryo-EM structures of the late-stage assembly intermediates of the bacterial 50S ribosomal subunit. Li N; Chen Y; Guo Q; Zhang Y; Yuan Y; Ma C; Deng H; Lei J; Gao N Nucleic Acids Res; 2013 Aug; 41(14):7073-83. PubMed ID: 23700310 [TBL] [Abstract][Full Text] [Related]
2. Loss of a single methylation in 23S rRNA delays 50S assembly at multiple late stages and impairs translation initiation and elongation. Wang W; Li W; Ge X; Yan K; Mandava CS; Sanyal S; Gao N Proc Natl Acad Sci U S A; 2020 Jul; 117(27):15609-15619. PubMed ID: 32571953 [TBL] [Abstract][Full Text] [Related]
3. Functional domains of the 50S subunit mature late in the assembly process. Jomaa A; Jain N; Davis JH; Williamson JR; Britton RA; Ortega J Nucleic Acids Res; 2014 Mar; 42(5):3419-35. PubMed ID: 24335279 [TBL] [Abstract][Full Text] [Related]
4. Structural Visualization of the Formation and Activation of the 50S Ribosomal Subunit during In Vitro Reconstitution. Nikolay R; Hilal T; Qin B; Mielke T; Bürger J; Loerke J; Textoris-Taube K; Nierhaus KH; Spahn CMT Mol Cell; 2018 Jun; 70(5):881-893.e3. PubMed ID: 29883607 [TBL] [Abstract][Full Text] [Related]
5. Protein L5 is crucial for in vivo assembly of the bacterial 50S ribosomal subunit central protuberance. Korepanov AP; Korobeinikova AV; Shestakov SA; Garber MB; Gongadze GM Nucleic Acids Res; 2012 Oct; 40(18):9153-9. PubMed ID: 22821559 [TBL] [Abstract][Full Text] [Related]
6. Structural consequences of the interaction of RbgA with a 50S ribosomal subunit assembly intermediate. Seffouh A; Jain N; Jahagirdar D; Basu K; Razi A; Ni X; Guarné A; Britton RA; Ortega J Nucleic Acids Res; 2019 Nov; 47(19):10414-10425. PubMed ID: 31665744 [TBL] [Abstract][Full Text] [Related]
7. YphC and YsxC GTPases assist the maturation of the central protuberance, GTPase associated region and functional core of the 50S ribosomal subunit. Ni X; Davis JH; Jain N; Razi A; Benlekbir S; McArthur AG; Rubinstein JL; Britton RA; Williamson JR; Ortega J Nucleic Acids Res; 2016 Sep; 44(17):8442-55. PubMed ID: 27484475 [TBL] [Abstract][Full Text] [Related]
8. Structural insights into the function of a unique tandem GTPase EngA in bacterial ribosome assembly. Zhang X; Yan K; Zhang Y; Li N; Ma C; Li Z; Zhang Y; Feng B; Liu J; Sun Y; Xu Y; Lei J; Gao N Nucleic Acids Res; 2014 Dec; 42(21):13430-9. PubMed ID: 25389271 [TBL] [Abstract][Full Text] [Related]
9. RbgA ensures the correct timing in the maturation of the 50S subunits functional sites. Seffouh A; Trahan C; Wasi T; Jain N; Basu K; Britton RA; Oeffinger M; Ortega J Nucleic Acids Res; 2022 Oct; 50(19):10801-10816. PubMed ID: 35141754 [TBL] [Abstract][Full Text] [Related]
10. Critical steps in the assembly process of the bacterial 50S ribosomal subunit. Seffouh A; Nikolay R; Ortega J Nucleic Acids Res; 2024 May; 52(8):4111-4123. PubMed ID: 38554105 [TBL] [Abstract][Full Text] [Related]
11. Modular Assembly of the Bacterial Large Ribosomal Subunit. Davis JH; Tan YZ; Carragher B; Potter CS; Lyumkis D; Williamson JR Cell; 2016 Dec; 167(6):1610-1622.e15. PubMed ID: 27912064 [TBL] [Abstract][Full Text] [Related]
12. Dynamics of the base of ribosomal A-site finger revealed by molecular dynamics simulations and Cryo-EM. Réblová K; Rázga F; Li W; Gao H; Frank J; Sponer J Nucleic Acids Res; 2010 Mar; 38(4):1325-40. PubMed ID: 19952067 [TBL] [Abstract][Full Text] [Related]
13. Single methylation of 23S rRNA triggers late steps of 50S ribosomal subunit assembly. Arai T; Ishiguro K; Kimura S; Sakaguchi Y; Suzuki T; Suzuki T Proc Natl Acad Sci U S A; 2015 Aug; 112(34):E4707-16. PubMed ID: 26261349 [TBL] [Abstract][Full Text] [Related]
14. Structures of B. subtilis Maturation RNases Captured on 50S Ribosome with Pre-rRNAs. Oerum S; Dendooven T; Catala M; Gilet L; Dégut C; Trinquier A; Bourguet M; Barraud P; Cianferani S; Luisi BF; Condon C; Tisné C Mol Cell; 2020 Oct; 80(2):227-236.e5. PubMed ID: 32991829 [TBL] [Abstract][Full Text] [Related]
15. The sarcin-ricin loop of 23S rRNA is essential for assembly of the functional core of the 50S ribosomal subunit. Lancaster L; Lambert NJ; Maklan EJ; Horan LH; Noller HF RNA; 2008 Oct; 14(10):1999-2012. PubMed ID: 18755834 [TBL] [Abstract][Full Text] [Related]
16. Cryo-EM captures a unique conformational rearrangement in 23S rRNA helices of the Mycobacterium 50S subunit. Baid P; Sengupta J Int J Biol Macromol; 2023 Dec; 253(Pt 3):126876. PubMed ID: 37709237 [TBL] [Abstract][Full Text] [Related]
17. Multiple GTPases participate in the assembly of the large ribosomal subunit in Bacillus subtilis. Schaefer L; Uicker WC; Wicker-Planquart C; Foucher AE; Jault JM; Britton RA J Bacteriol; 2006 Dec; 188(23):8252-8. PubMed ID: 16997968 [TBL] [Abstract][Full Text] [Related]
18. Involvement of ribosomal protein L6 in assembly of functional 50S ribosomal subunit in Escherichia coli cells. Shigeno Y; Uchiumi T; Nomura T Biochem Biophys Res Commun; 2016 Apr; 473(1):237-242. PubMed ID: 27003253 [TBL] [Abstract][Full Text] [Related]
19. Authentic precursors to ribosomal subunits accumulate in Escherichia coli in the absence of functional DnaK chaperone. El Hage A; Alix JH Mol Microbiol; 2004 Jan; 51(1):189-201. PubMed ID: 14651621 [TBL] [Abstract][Full Text] [Related]
20. Cryo-EM captures early ribosome assembly in action. Qin B; Lauer SM; Balke A; Vieira-Vieira CH; Bürger J; Mielke T; Selbach M; Scheerer P; Spahn CMT; Nikolay R Nat Commun; 2023 Feb; 14(1):898. PubMed ID: 36797249 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]