These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 23700383)

  • 1. Advances in neuroprosthetic learning and control.
    Carmena JM
    PLoS Biol; 2013; 11(5):e1001561. PubMed ID: 23700383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural correlates of skill acquisition with a cortical brain-machine interface.
    Ganguly K; Carmena JM
    J Mot Behav; 2010 Nov; 42(6):355-60. PubMed ID: 21184353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developments in brain-machine interfaces from the perspective of robotics.
    Kim HK; Park S; Srinivasan MA
    Hum Mov Sci; 2009 Apr; 28(2):191-203. PubMed ID: 19230997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Converging Robotic Technologies in Targeted Neural Rehabilitation: A Review of Emerging Solutions and Challenges.
    Nizamis K; Athanasiou A; Almpani S; Dimitrousis C; Astaras A
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33809721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using reinforcement learning to provide stable brain-machine interface control despite neural input reorganization.
    Pohlmeyer EA; Mahmoudi B; Geng S; Prins NW; Sanchez JC
    PLoS One; 2014; 9(1):e87253. PubMed ID: 24498055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blending of brain-machine interface and vision-guided autonomous robotics improves neuroprosthetic arm performance during grasping.
    Downey JE; Weiss JM; Muelling K; Venkatraman A; Valois JS; Hebert M; Bagnell JA; Schwartz AB; Collinger JL
    J Neuroeng Rehabil; 2016 Mar; 13():28. PubMed ID: 26987662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward more versatile and intuitive cortical brain-machine interfaces.
    Andersen RA; Kellis S; Klaes C; Aflalo T
    Curr Biol; 2014 Sep; 24(18):R885-R897. PubMed ID: 25247368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Defining brain-machine interface applications by matching interface performance with device requirements.
    Tonet O; Marinelli M; Citi L; Rossini PM; Rossini L; Megali G; Dario P
    J Neurosci Methods; 2008 Jan; 167(1):91-104. PubMed ID: 17499364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural interface systems with on-device computing: machine learning and neuromorphic architectures.
    Yoo J; Shoaran M
    Curr Opin Biotechnol; 2021 Dec; 72():95-101. PubMed ID: 34735990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive decoding for brain-machine interfaces through Bayesian parameter updates.
    Li Z; O'Doherty JE; Lebedev MA; Nicolelis MA
    Neural Comput; 2011 Dec; 23(12):3162-204. PubMed ID: 21919788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The science of neural interface systems.
    Hatsopoulos NG; Donoghue JP
    Annu Rev Neurosci; 2009; 32():249-66. PubMed ID: 19400719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Challenges and opportunities for next-generation intracortically based neural prostheses.
    Gilja V; Chestek CA; Diester I; Henderson JM; Deisseroth K; Shenoy KV
    IEEE Trans Biomed Eng; 2011 Jul; 58(7):1891-9. PubMed ID: 21257365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuronal tuning in a brain-machine interface during Reinforcement Learning.
    Mahmoudi B; Digiovanna J; Principe JC; Sanchez JC
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4491-4. PubMed ID: 19163713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Connecting cortex to machines: recent advances in brain interfaces.
    Donoghue JP
    Nat Neurosci; 2002 Nov; 5 Suppl():1085-8. PubMed ID: 12403992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Current challenges to the clinical translation of brain machine interface technology.
    Lu CW; Patil PG; Chestek CA
    Int Rev Neurobiol; 2012; 107():137-60. PubMed ID: 23206681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A perspective on intelligent devices and environments in medical rehabilitation.
    Cooper RA; Dicianno BE; Brewer B; LoPresti E; Ding D; Simpson R; Grindle G; Wang H
    Med Eng Phys; 2008 Dec; 30(10):1387-98. PubMed ID: 18993108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physically interactive robotic technology for neuromotor rehabilitation.
    Hogan N; Krebs HI
    Prog Brain Res; 2011; 192():59-68. PubMed ID: 21763518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neurorobotics and neuroprostheses: Towards a new anatomy.
    Barroso FO; Torricelli D; Moreno JC
    Anat Rec (Hoboken); 2023 Apr; 306(4):706-709. PubMed ID: 36715240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain-machine interfaces beyond neuroprosthetics.
    Moxon KA; Foffani G
    Neuron; 2015 Apr; 86(1):55-67. PubMed ID: 25856486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploiting co-adaptation for the design of symbiotic neuroprosthetic assistants.
    Sanchez JC; Mahmoudi B; DiGiovanna J; Principe JC
    Neural Netw; 2009 Apr; 22(3):305-15. PubMed ID: 19403263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.