These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 23701367)

  • 41. Metabolic Engineering of
    Diao M; Chen X; Li J; Shi Y; Yu B; Ma Z; Li J; Xie N
    Microorganisms; 2023 Jan; 11(1):. PubMed ID: 36677495
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Acetoin synthesis acquisition favors Escherichia coli growth at low pH.
    Vivijs B; Moons P; Aertsen A; Michiels CW
    Appl Environ Microbiol; 2014 Oct; 80(19):6054-61. PubMed ID: 25063653
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Stereospecificity of Corynebacterium glutamicum 2,3-butanediol dehydrogenase and implications for the stereochemical purity of bioproduced 2,3-butanediol.
    Radoš D; Turner DL; Catarino T; Hoffart E; Neves AR; Eikmanns BJ; Blombach B; Santos H
    Appl Microbiol Biotechnol; 2016 Dec; 100(24):10573-10583. PubMed ID: 27687994
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Engineering of a novel carbonyl reductase with coenzyme regeneration in E. coli for efficient biosynthesis of enantiopure chiral alcohols.
    Wei P; Gao JX; Zheng GW; Wu H; Zong MH; Lou WY
    J Biotechnol; 2016 Jul; 230():54-62. PubMed ID: 27211999
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A detoxication route for acetaldehyde: metabolism of diacetyl, acetoin, and 2,3-butanediol in liver homogenate and perfused liver of rats.
    Otsuka M; Mine T; Ohuchi K; Ohmori S
    J Biochem; 1996 Feb; 119(2):246-51. PubMed ID: 8882713
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Reducing diacetyl production of wine by overexpressing BDH1 and BDH2 in Saccharomyces uvarum.
    Li P; Guo X; Shi T; Hu Z; Chen Y; Du L; Xiao D
    J Ind Microbiol Biotechnol; 2017 Nov; 44(11):1541-1550. PubMed ID: 28856461
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Metabolic engineering of Bacillus subtilis for the co-production of uridine and acetoin.
    Fan X; Wu H; Jia Z; Li G; Li Q; Chen N; Xie X
    Appl Microbiol Biotechnol; 2018 Oct; 102(20):8753-8762. PubMed ID: 30120523
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Engineering of cofactor regeneration enhances (2S,3S)-2,3-butanediol production from diacetyl.
    Wang Y; Li L; Ma C; Gao C; Tao F; Xu P
    Sci Rep; 2013; 3():2643. PubMed ID: 24025762
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A shortened, two-enzyme pathway for 2,3-butanediol production in Escherichia coli.
    Reshamwala SMS; Deb SS; Lali AM
    J Ind Microbiol Biotechnol; 2017 Sep; 44(9):1273-1277. PubMed ID: 28547323
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Pathway engineering of Enterobacter aerogenes to improve acetoin production by reducing by-products formation.
    Jang JW; Jung HM; Im DK; Jung MY; Oh MK
    Enzyme Microb Technol; 2017 Nov; 106():114-118. PubMed ID: 28859805
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Isolation, purification, and study of certain properties of diacetyl(acetoin) reductase in the yeast Saccharomyces vini.
    Kavadze AV; Rodopulo AK; Shaposhnikov GL
    Biol Bull Acad Sci USSR; 1979; 6(3):356-61. PubMed ID: 45079
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biotechnological production of chiral acetoin.
    Meng W; Ma C; Xu P; Gao C
    Trends Biotechnol; 2022 Aug; 40(8):958-973. PubMed ID: 35210122
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Efficient biosynthesis of (S)-1-phenyl-1,2-ethanediol catalyzed by (S)-carbonyl reductase Ⅱ and glucose dehydrogenase].
    Jiang J; Zhang R; Zhou X; Li K; Li J; Li Y; Xu Y
    Wei Sheng Wu Xue Bao; 2016 Oct; 56(10):1647-55. PubMed ID: 29741827
    [TBL] [Abstract][Full Text] [Related]  

  • 54. New insights into Lactococcus lactis diacetyl- and acetoin-producing strains isolated from diverse origins.
    Passerini D; Laroute V; Coddeville M; Le Bourgeois P; Loubière P; Ritzenthaler P; Cocaign-Bousquet M; Daveran-Mingot ML
    Int J Food Microbiol; 2013 Jan; 160(3):329-36. PubMed ID: 23290242
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Regulation of the acetoin catabolic pathway is controlled by sigma L in Bacillus subtilis.
    Ali NO; Bignon J; Rapoport G; Debarbouille M
    J Bacteriol; 2001 Apr; 183(8):2497-504. PubMed ID: 11274109
    [TBL] [Abstract][Full Text] [Related]  

  • 56. High production of optically pure (3R)-acetoin by a newly isolated marine strain of Bacillus subtilis CGMCC 13141.
    Dai J; Wang Z; Xiu ZL
    Bioprocess Biosyst Eng; 2019 Mar; 42(3):475-483. PubMed ID: 30523447
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Metabolic engineering of Candida glabrata for diacetyl production.
    Gao X; Xu N; Li S; Liu L
    PLoS One; 2014; 9(3):e89854. PubMed ID: 24614328
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Laboratory-scale production of acetoin plus diacetyl by Enterobacter cloacae ATCC 27613.
    Gupta KG; Yadav NK; Dhawan S
    Biotechnol Bioeng; 1978 Dec; 20(12):1895-901. PubMed ID: 728550
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Metabolic engineering of Escherichia coli: construction of an efficient biocatalyst for D-mannitol formation in a whole-cell biotransformation.
    Kaup B; Bringer-Meyer S; Sahm H
    Appl Microbiol Biotechnol; 2004 Apr; 64(3):333-9. PubMed ID: 14586579
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Molecular cloning, expression and tissue distribution of hamster diacetyl reductase. Identity with L-xylulose reductase.
    Ishikura S; Isaji T; Usami N; Kitahara K; Nakagawa J; Hara A
    Chem Biol Interact; 2001 Jan; 130-132(1-3):879-89. PubMed ID: 11306103
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.