These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 23701398)
1. Low-temperature, bottom-up synthesis of graphene via a radical-coupling reaction. Jiang L; Niu T; Lu X; Dong H; Chen W; Liu Y; Hu W; Zhu D J Am Chem Soc; 2013 Jun; 135(24):9050-4. PubMed ID: 23701398 [TBL] [Abstract][Full Text] [Related]
2. Chemical vapor deposition of high quality graphene films from carbon dioxide atmospheres. Strudwick AJ; Weber NE; Schwab MG; Kettner M; Weitz RT; Wünsch JR; Müllen K; Sachdev H ACS Nano; 2015 Jan; 9(1):31-42. PubMed ID: 25398132 [TBL] [Abstract][Full Text] [Related]
3. Characterization of graphene films and transistors grown on sapphire by metal-free chemical vapor deposition. Fanton MA; Robinson JA; Puls C; Liu Y; Hollander MJ; Weiland BE; Labella M; Trumbull K; Kasarda R; Howsare C; Stitt J; Snyder DW ACS Nano; 2011 Oct; 5(10):8062-9. PubMed ID: 21905713 [TBL] [Abstract][Full Text] [Related]
4. How does graphene grow? Easy access to well-ordered graphene films. Müller F; Sachdev H; Hüfner S; Pollard AJ; Perkins EW; Russell JC; Beton PH; Gsell S; Fischer M; Schreck M; Stritzker B Small; 2009 Oct; 5(20):2291-6. PubMed ID: 19565616 [TBL] [Abstract][Full Text] [Related]
5. Low-voltage back-gated atmospheric pressure chemical vapor deposition based graphene-striped channel transistor with high-κ dielectric showing room-temperature mobility > 11,000 cm(2)/V·s. Smith C; Qaisi R; Liu Z; Yu Q; Hussain MM ACS Nano; 2013 Jul; 7(7):5818-23. PubMed ID: 23777434 [TBL] [Abstract][Full Text] [Related]
6. Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. Li X; Magnuson CW; Venugopal A; Tromp RM; Hannon JB; Vogel EM; Colombo L; Ruoff RS J Am Chem Soc; 2011 Mar; 133(9):2816-9. PubMed ID: 21309560 [TBL] [Abstract][Full Text] [Related]
7. CMOS-compatible synthesis of large-area, high-mobility graphene by chemical vapor deposition of acetylene on cobalt thin films. Ramón ME; Gupta A; Corbet C; Ferrer DA; Movva HC; Carpenter G; Colombo L; Bourianoff G; Doczy M; Akinwande D; Tutuc E; Banerjee SK ACS Nano; 2011 Sep; 5(9):7198-204. PubMed ID: 21800895 [TBL] [Abstract][Full Text] [Related]
8. Thermal stability of multilayer graphene films synthesized by chemical vapor deposition and stained by metallic impurities. Kahng YH; Lee S; Park W; Jo G; Choe M; Lee JH; Yu H; Lee T; Lee K Nanotechnology; 2012 Feb; 23(7):075702. PubMed ID: 22261350 [TBL] [Abstract][Full Text] [Related]
9. Control of thickness uniformity and grain size in graphene films for transparent conductive electrodes. Wu W; Yu Q; Peng P; Liu Z; Bao J; Pei SS Nanotechnology; 2012 Jan; 23(3):035603. PubMed ID: 22173552 [TBL] [Abstract][Full Text] [Related]
10. One-step formation of a single atomic-layer transistor by the selective fluorination of a graphene film. Ho KI; Liao JH; Huang CH; Hsu CL; Zhang W; Lu AY; Li LJ; Lai CS; Su CY Small; 2014 Mar; 10(5):989-97. PubMed ID: 23956038 [TBL] [Abstract][Full Text] [Related]
11. In situ synthesis of a large area boron nitride/graphene monolayer/boron nitride film by chemical vapor deposition. Wu Q; Jang SK; Park S; Jung SJ; Suh H; Lee YH; Lee S; Song YJ Nanoscale; 2015 May; 7(17):7574-9. PubMed ID: 25864409 [TBL] [Abstract][Full Text] [Related]
12. A direct and polymer-free method for transferring graphene grown by chemical vapor deposition to any substrate. Lin WH; Chen TH; Chang JK; Taur JI; Lo YY; Lee WL; Chang CS; Su WB; Wu CI ACS Nano; 2014 Feb; 8(2):1784-91. PubMed ID: 24471977 [TBL] [Abstract][Full Text] [Related]
13. Seeding atomic layer deposition of high-k dielectrics on epitaxial graphene with organic self-assembled monolayers. Alaboson JM; Wang QH; Emery JD; Lipson AL; Bedzyk MJ; Elam JW; Pellin MJ; Hersam MC ACS Nano; 2011 Jun; 5(6):5223-32. PubMed ID: 21553842 [TBL] [Abstract][Full Text] [Related]
14. Growth intermediates for CVD graphene on Cu(111): carbon clusters and defective graphene. Niu T; Zhou M; Zhang J; Feng Y; Chen W J Am Chem Soc; 2013 Jun; 135(22):8409-14. PubMed ID: 23675983 [TBL] [Abstract][Full Text] [Related]
15. Band gap engineering of chemical vapor deposited graphene by in situ BN doping. Chang CK; Kataria S; Kuo CC; Ganguly A; Wang BY; Hwang JY; Huang KJ; Yang WH; Wang SB; Chuang CH; Chen M; Huang CI; Pong WF; Song KJ; Chang SJ; Guo JH; Tai Y; Tsujimoto M; Isoda S; Chen CW; Chen LC; Chen KH ACS Nano; 2013 Feb; 7(2):1333-41. PubMed ID: 23273110 [TBL] [Abstract][Full Text] [Related]
16. Exploratory combustion synthesis: amorphous indium yttrium oxide for thin-film transistors. Hennek JW; Kim MG; Kanatzidis MG; Facchetti A; Marks TJ J Am Chem Soc; 2012 Jun; 134(23):9593-6. PubMed ID: 22625409 [TBL] [Abstract][Full Text] [Related]
17. Effects of temperature and ammonia flow rate on the chemical vapour deposition growth of nitrogen-doped graphene. Koós AA; Murdock AT; Nemes-Incze P; Nicholls RJ; Pollard AJ; Spencer SJ; Shard AG; Roy D; Biró LP; Grobert N Phys Chem Chem Phys; 2014 Sep; 16(36):19446-52. PubMed ID: 25103112 [TBL] [Abstract][Full Text] [Related]
18. In situ observations of the atomistic mechanisms of Ni catalyzed low temperature graphene growth. Patera LL; Africh C; Weatherup RS; Blume R; Bhardwaj S; Castellarin-Cudia C; Knop-Gericke A; Schloegl R; Comelli G; Hofmann S; Cepek C ACS Nano; 2013 Sep; 7(9):7901-12. PubMed ID: 23924234 [TBL] [Abstract][Full Text] [Related]
19. Toward high throughput interconvertible graphane-to-graphene growth and patterning. Wang Y; Xu X; Lu J; Lin M; Bao Q; Özyilmaz B; Loh KP ACS Nano; 2010 Oct; 4(10):6146-52. PubMed ID: 20845918 [TBL] [Abstract][Full Text] [Related]
20. Direct growth of patterned graphene on SiO2 substrates without the use of catalysts or lithography. Kim YS; Joo K; Jerng SK; Lee JH; Yoon E; Chun SH Nanoscale; 2014 Sep; 6(17):10100-5. PubMed ID: 25034505 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]