BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 23701447)

  • 41. Sleep induction and temperature lowering by medial preoptic alpha(1) adrenergic receptors.
    Vetrivelan R; Mallick HN; Kumar VM
    Physiol Behav; 2006 Apr; 87(4):707-13. PubMed ID: 16529782
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of sleep deprivation on multi-unit discharge activity of basal forebrain.
    Kostin A; Stenberg D; Porkka-Heiskanen T
    J Sleep Res; 2010 Jun; 19(2):269-79. PubMed ID: 20040037
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The metabotropic glutamate (mGLU)2/3 receptor antagonist LY341495 [2S-2-amino-2-(1S,2S-2-carboxycyclopropyl-1-yl)-3-(xanth-9-yl)propanoic acid] stimulates waking and fast electroencephalogram power and blocks the effects of the mGLU2/3 receptor agonist ly379268 [(-)-2-oxa-4-aminobicyclo[3.1.0]hexane-4,6-dicarboxylate] in rats.
    Feinberg I; Schoepp DD; Hsieh KC; Darchia N; Campbell IG
    J Pharmacol Exp Ther; 2005 Feb; 312(2):826-33. PubMed ID: 15383637
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Motor Theory of Sleep-Wake Control: Arousal-Action Circuit.
    Liu D; Dan Y
    Annu Rev Neurosci; 2019 Jul; 42():27-46. PubMed ID: 30699051
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Influence of tetrodotoxin inactivation of the central nucleus of the amygdala on sleep and arousal.
    Tang X; Yang L; Liu X; Sanford LD
    Sleep; 2005 Aug; 28(8):923-30. PubMed ID: 16218075
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cortical nNOS/NK1 Receptor Neurons are Regulated by Cholinergic Projections From the Basal Forebrain.
    Williams RH; Vazquez-DeRose J; Thomas AM; Piquet J; Cauli B; Kilduff TS
    Cereb Cortex; 2018 Jun; 28(6):1959-1979. PubMed ID: 28472227
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Discharge profiles of identified GABAergic in comparison to cholinergic and putative glutamatergic basal forebrain neurons across the sleep-wake cycle.
    Hassani OK; Lee MG; Henny P; Jones BE
    J Neurosci; 2009 Sep; 29(38):11828-40. PubMed ID: 19776269
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Microdialysis perfusion of orexin-A in the basal forebrain increases wakefulness in freely behaving rats.
    Thakkar MM; Ramesh V; Strecker RE; McCarley RW
    Arch Ital Biol; 2001 Apr; 139(3):313-28. PubMed ID: 11330208
    [TBL] [Abstract][Full Text] [Related]  

  • 49. GABA-to-ACh ratio in basal forebrain and cerebral cortex varies significantly during sleep.
    Vanini G; Lydic R; Baghdoyan HA
    Sleep; 2012 Oct; 35(10):1325-34. PubMed ID: 23024430
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Brain site-specificity of extracellular adenosine concentration changes during sleep deprivation and spontaneous sleep: an in vivo microdialysis study.
    Porkka-Heiskanen T; Strecker RE; McCarley RW
    Neuroscience; 2000; 99(3):507-17. PubMed ID: 11029542
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Endogenous excitatory drive modulating respiratory muscle activity across sleep-wake states.
    Chan E; Steenland HW; Liu H; Horner RL
    Am J Respir Crit Care Med; 2006 Dec; 174(11):1264-73. PubMed ID: 16931636
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dual projections of single cholinergic and aminergic brainstem neurons to the thalamus and basal forebrain in the rat.
    Losier BJ; Semba K
    Brain Res; 1993 Feb; 604(1-2):41-52. PubMed ID: 7681346
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cholinergic neurons of the basal forebrain mediate biochemical and electrophysiological mechanisms underlying sleep homeostasis.
    Kalinchuk AV; Porkka-Heiskanen T; McCarley RW; Basheer R
    Eur J Neurosci; 2015 Jan; 41(2):182-95. PubMed ID: 25369989
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Advances in the study of the effect of basal forebrain on sleep-wake regulation].
    Jiang SY; Wang L; Chen L; Hong ZY
    Yao Xue Xue Bao; 2016 Aug; 51(8):1196-201. PubMed ID: 29897712
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Activation of the basal forebrain by the orexin/hypocretin neurones.
    Arrigoni E; Mochizuki T; Scammell TE
    Acta Physiol (Oxf); 2010 Mar; 198(3):223-35. PubMed ID: 19723027
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Reassessment of the structural basis of the ascending arousal system.
    Fuller PM; Sherman D; Pedersen NP; Saper CB; Lu J
    J Comp Neurol; 2011 Apr; 519(5):933-56. PubMed ID: 21280045
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Alpha 2 adrenergic receptors on GABAergic, putative sleep-promoting basal forebrain neurons.
    Manns ID; Lee MG; Modirrousta M; Hou YP; Jones BE
    Eur J Neurosci; 2003 Aug; 18(3):723-7. PubMed ID: 12911769
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Changes in body temperature and sleep-wakefulness after intrapreoptic injection of methoxamine in rats.
    Vetrivelan R; Mallick HN; Kumar VM
    Neural Plast; 2003; 10(4):267-78. PubMed ID: 15152981
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of saporin-induced lesions of three arousal populations on daily levels of sleep and wake.
    Blanco-Centurion C; Gerashchenko D; Shiromani PJ
    J Neurosci; 2007 Dec; 27(51):14041-8. PubMed ID: 18094243
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Activity, modulation and role of basal forebrain cholinergic neurons innervating the cerebral cortex.
    Jones BE
    Prog Brain Res; 2004; 145():157-69. PubMed ID: 14650914
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.