These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 23701454)

  • 1. E(1)(A) electronic band gap in wurtzite InAs nanowires studied by resonant Raman scattering.
    Zardo I; Yazji S; Hörmann N; Hertenberger S; Funk S; Mangialardo S; Morkötter S; Koblmüller G; Postorino P; Abstreiter G
    Nano Lett; 2013 Jul; 13(7):3011-6. PubMed ID: 23701454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Type II band alignment in InAs zinc-blende/wurtzite heterostructured nanowires.
    Panda JK; Chakraborty A; Ercolani D; Gemmi M; Sorba L; Roy A
    Nanotechnology; 2016 Oct; 27(41):415201. PubMed ID: 27586817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical response of wurtzite and zinc blende GaP nanowire arrays.
    Aghaeipour M; Anttu N; Nylund G; Berg A; Lehmann S; Pistol ME
    Opt Express; 2015 Nov; 23(23):30177-87. PubMed ID: 26698498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-resonant Raman scattering of wurtzite GaAs and InP nanowires.
    Vainorius N; Lehmann S; Dick KA; Pistol ME
    Opt Express; 2020 Apr; 28(8):11016-11022. PubMed ID: 32403621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Untangling the electronic band structure of wurtzite GaAs nanowires by resonant Raman spectroscopy.
    Ketterer B; Heiss M; Uccelli E; Arbiol J; i Morral AF
    ACS Nano; 2011 Sep; 5(9):7585-92. PubMed ID: 21838304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal phase-dependent nanophotonic resonances in InAs nanowire arrays.
    Anttu N; Lehmann S; Storm K; Dick KA; Samuelson L; Wu PM; Pistol ME
    Nano Lett; 2014 Oct; 14(10):5650-5. PubMed ID: 25158002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wurtzite/Zinc-Blende 'K'-shape InAs Nanowires with Embedded Two-Dimensional Wurtzite Plates.
    Kang JH; Galicka M; Kacman P; Shtrikman H
    Nano Lett; 2017 Jan; 17(1):531-537. PubMed ID: 28002676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal phase induced bandgap modifications in AlAs nanowires probed by resonant Raman spectroscopy.
    Funk S; Li A; Ercolani D; Gemmi M; Sorba L; Zardo I
    ACS Nano; 2013 Feb; 7(2):1400-7. PubMed ID: 23281738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pressure tuning of the optical properties of GaAs nanowires.
    Zardo I; Yazji S; Marini C; Uccelli E; Fontcuberta i Morral A; Abstreiter G; Postorino P
    ACS Nano; 2012 Apr; 6(4):3284-91. PubMed ID: 22443867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vibrational, electronic and structural properties of wurtzite GaAs nanowires under hydrostatic pressure.
    Zhou W; Chen XJ; Zhang JB; Li XH; Wang YQ; Goncharov AF
    Sci Rep; 2014 Sep; 4():6472. PubMed ID: 25253566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping of the electronic band gap along the axis of a single InAs/InSb
    Patra A; Chakraborty M; Roy A
    Nanoscale; 2016 Oct; 8(42):18143-18149. PubMed ID: 27738696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature dependent electronic band structure of wurtzite GaAs nanowires.
    Vainorius N; Kubitza S; Lehmann S; Samuelson L; Dick KA; Pistol ME
    Nanoscale; 2018 Jan; 10(3):1481-1486. PubMed ID: 29303195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bandgap Energy of Wurtzite InAs Nanowires.
    Rota MB; Ameruddin AS; Fonseka HA; Gao Q; Mura F; Polimeni A; Miriametro A; Tan HH; Jagadish C; Capizzi M
    Nano Lett; 2016 Aug; 16(8):5197-203. PubMed ID: 27467011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical emission of InAs nanowires.
    Möller M; de Lima MM; Cantarero A; Chiaramonte T; Cotta MA; Iikawa F
    Nanotechnology; 2012 Sep; 23(37):375704. PubMed ID: 22922756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pressure dependence of Raman spectrum in InAs nanowires.
    Yazji S; Zardo I; Hertenberger S; Morkötter S; Koblmüller G; Abstreiter G; Postorino P
    J Phys Condens Matter; 2014 Jun; 26(23):235301. PubMed ID: 25932470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First-principles study of the electronic properties of wurtzite, zinc-blende, and twinned InP nanowires.
    Li D; Wang Z; Gao F
    Nanotechnology; 2010 Dec; 21(50):505709. PubMed ID: 21098947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Raman study on zinc-blende single InAs nanowire grown on Si (111) substrate.
    Li T; Gao L; Lei W; Guo L; Yang T; Chen Y; Wang Z
    Nanoscale Res Lett; 2013 Jan; 8(1):27. PubMed ID: 23316901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unraveling electronic band structure of narrow-bandgap p-n nanojunctions in heterostructured nanowires.
    Zamani RR; Hage FS; Eljarrat A; Namazi L; Ramasse QM; Dick KA
    Phys Chem Chem Phys; 2021 Nov; 23(44):25019-25023. PubMed ID: 34730587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Raman scattering study of InAs nanowires under high pressure.
    Majumdar D; Basu A; Dev Mukherjee G; Ercolani D; Sorba L; Singha A
    Nanotechnology; 2014 Nov; 25(46):465704. PubMed ID: 25360514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic Structure Changes Due to Crystal Phase Switching at the Atomic Scale Limit.
    Knutsson JV; Lehmann S; Hjort M; Lundgren E; Dick KA; Timm R; Mikkelsen A
    ACS Nano; 2017 Oct; 11(10):10519-10528. PubMed ID: 28960985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.