These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 23701489)
1. Performance of the widely used Minnesota density functionals for the prediction of heat of formations, ionization potentials of some benchmarked first row transition metal complexes. Shil S; Bhattacharya D; Sarkar S; Misra A J Phys Chem A; 2013 Jun; 117(23):4945-55. PubMed ID: 23701489 [TBL] [Abstract][Full Text] [Related]
2. Assessment of the "6-31+G** + LANL2DZ" mixed basis set coupled with density functional theory methods and the effective core potential: prediction of heats of formation and ionization potentials for first-row-transition-metal complexes. Yang Y; Weaver MN; Merz KM J Phys Chem A; 2009 Sep; 113(36):9843-51. PubMed ID: 19691271 [TBL] [Abstract][Full Text] [Related]
3. Assessing the performance of density functional theory for the electronic structure of metal-salens: the M06 suite of functionals and the d⁴-metals. Takatani T; Sears JS; Sherrill CD J Phys Chem A; 2010 Nov; 114(43):11714-8. PubMed ID: 20942498 [TBL] [Abstract][Full Text] [Related]
4. Density functionals with broad applicability in chemistry. Zhao Y; Truhlar DG Acc Chem Res; 2008 Feb; 41(2):157-67. PubMed ID: 18186612 [TBL] [Abstract][Full Text] [Related]
5. Exploring the Limit of Accuracy of the Global Hybrid Meta Density Functional for Main-Group Thermochemistry, Kinetics, and Noncovalent Interactions. Zhao Y; Truhlar DG J Chem Theory Comput; 2008 Nov; 4(11):1849-68. PubMed ID: 26620329 [TBL] [Abstract][Full Text] [Related]
6. How Accurate Are the Minnesota Density Functionals for Noncovalent Interactions, Isomerization Energies, Thermochemistry, and Barrier Heights Involving Molecules Composed of Main-Group Elements? Mardirossian N; Head-Gordon M J Chem Theory Comput; 2016 Sep; 12(9):4303-25. PubMed ID: 27537680 [TBL] [Abstract][Full Text] [Related]
7. On the Performances of the M06 Family of Density Functionals for Electronic Excitation Energies. Jacquemin D; Perpète EA; Ciofini I; Adamo C; Valero R; Zhao Y; Truhlar DG J Chem Theory Comput; 2010 Jul; 6(7):2071-85. PubMed ID: 26615935 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of the Performance of the B3LYP, PBE0, and M06 DFT Functionals, and DBLOC-Corrected Versions, in the Calculation of Redox Potentials and Spin Splittings for Transition Metal Containing Systems. Coskun D; Jerome SV; Friesner RA J Chem Theory Comput; 2016 Mar; 12(3):1121-8. PubMed ID: 26808695 [TBL] [Abstract][Full Text] [Related]
9. Assessment of the Performance of the M05-2X and M06-2X Exchange-Correlation Functionals for Noncovalent Interactions in Biomolecules. Hohenstein EG; Chill ST; Sherrill CD J Chem Theory Comput; 2008 Dec; 4(12):1996-2000. PubMed ID: 26620472 [TBL] [Abstract][Full Text] [Related]
10. Performance of conventional and range-separated hybrid density functionals in calculations of electronic circular dichroism spectra of transition metal complexes. Rudolph M; Autschbach J J Phys Chem A; 2011 Dec; 115(51):14677-86. PubMed ID: 22082193 [TBL] [Abstract][Full Text] [Related]
11. TD-DFT Benchmark on Inorganic Pt(II) and Ir(III) Complexes. Latouche C; Skouteris D; Palazzetti F; Barone V J Chem Theory Comput; 2015 Jul; 11(7):3281-9. PubMed ID: 26575764 [TBL] [Abstract][Full Text] [Related]
12. Assessment of density functional theory methods for the computation of heats of formation and ionization potentials of systems containing third row transition metals. Riley KE; Merz KM J Phys Chem A; 2007 Jul; 111(27):6044-53. PubMed ID: 17571862 [TBL] [Abstract][Full Text] [Related]
13. How Well Can Modern Density Functionals Predict Internuclear Distances at Transition States? Xu X; Alecu IM; Truhlar DG J Chem Theory Comput; 2011 Jun; 7(6):1667-76. PubMed ID: 26596431 [TBL] [Abstract][Full Text] [Related]
14. Assessment of the accuracy of density functionals for prediction of relative energies and geometries of low-lying isomers of water hexamers. Dahlke EE; Olson RM; Leverentz HR; Truhlar DG J Phys Chem A; 2008 May; 112(17):3976-84. PubMed ID: 18393474 [TBL] [Abstract][Full Text] [Related]
15. Energy-resolved collision-induced dissociation studies of 1,10-phenanthroline complexes of the late first-row divalent transition metal cations: determination of the third sequential binding energies. Nose H; Chen Y; Rodgers MT J Phys Chem A; 2013 May; 117(20):4316-30. PubMed ID: 23565706 [TBL] [Abstract][Full Text] [Related]
16. Design of Density Functionals by Combining the Method of Constraint Satisfaction with Parametrization for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions. Zhao Y; Schultz NE; Truhlar DG J Chem Theory Comput; 2006 Mar; 2(2):364-82. PubMed ID: 26626525 [TBL] [Abstract][Full Text] [Related]
17. Assessment and validation of density functional approximations for iron carbide and iron carbide cation. Li R; Peverati R; Isegawa M; Truhlar DG J Phys Chem A; 2013 Jan; 117(1):169-73. PubMed ID: 23240935 [TBL] [Abstract][Full Text] [Related]
18. Appropriate description of intermolecular interactions in the methane hydrates: an assessment of DFT methods. Liu Y; Zhao J; Li F; Chen Z J Comput Chem; 2013 Jan; 34(2):121-31. PubMed ID: 22949382 [TBL] [Abstract][Full Text] [Related]
19. Assessment of new meta and hybrid meta density functionals for predicting the geometry and binding energy of a challenging system: the dimer of H2S and benzene. Leverentz HR; Truhlar DG J Phys Chem A; 2008 Jul; 112(26):6009-16. PubMed ID: 18540587 [TBL] [Abstract][Full Text] [Related]
20. Performance of M06, M06-2X, and M06-HF density functionals for conformationally flexible anionic clusters: M06 functionals perform better than B3LYP for a model system with dispersion and ionic hydrogen-bonding interactions. Walker M; Harvey AJ; Sen A; Dessent CE J Phys Chem A; 2013 Nov; 117(47):12590-600. PubMed ID: 24147965 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]