These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
88 related articles for article (PubMed ID: 23701606)
1. Isolation and characterization of entomopathogenic bacteria from soil samples from the western region of Cuba. González A; Rodríguez G; Bruzón RY; Díaz M; Companionis A; Menéndez Z; Gato R J Vector Ecol; 2013 Jun; 38(1):46-52. PubMed ID: 23701606 [TBL] [Abstract][Full Text] [Related]
2. Characterization of Bacillus thuringiensis soil isolates from Cuba, with insecticidal activity against mosquitoes. González A; Díaz R; Díaz M; Borrero Y; Bruzón RY; Carreras B; Gato R Rev Biol Trop; 2011 Sep; 59(3):1007-16. PubMed ID: 22017108 [TBL] [Abstract][Full Text] [Related]
3. [Susceptibility of Aedes aegypti (L.) strains from Havana to a Bacillus thuringiensis var. israelensis]. Menéndez Díaz Z; Rodríguez Rodríguez J; Gato Armas R; Companioni Ibañez A; Díaz Pérez M; Bruzón Aguila RY Rev Cubana Med Trop; 2012; 64(3):324-9. PubMed ID: 23424808 [TBL] [Abstract][Full Text] [Related]
5. Entomopathogenic spore-formers from soil samples of mosquito habitats in northern Nigeria. Weiser J; Prasertphon S Zentralbl Mikrobiol; 1984; 139(1):49-55. PubMed ID: 6426190 [TBL] [Abstract][Full Text] [Related]
6. An isolate of Bacillus circulans toxic to mosquito larvae. Darriet F; Hougard JM J Am Mosq Control Assoc; 2002 Mar; 18(1):65-7. PubMed ID: 11998934 [TBL] [Abstract][Full Text] [Related]
7. Effect of inactivation by sunlight on the larvicidal activities of mosquitocidal Bacillus thuringiensis H-14 isolates from Nigerian soils. Obeta JA J Commun Dis; 1996 Jun; 28(2):94-100. PubMed ID: 8810143 [TBL] [Abstract][Full Text] [Related]
8. Residual activity of Bacillus thuringiensis serovars medellin and jegathesan on Culex pipiens and Aedes aegypti larvae. Thiéry I; Fouque F; Gaven B; Lagneau C J Am Mosq Control Assoc; 1999 Sep; 15(3):371-9. PubMed ID: 10480130 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of entomopathogenic bacteria against Aedes polynesiensis, the vector of lymphatic filariasis in French Polynesia. Mercer DR; Nicolas L; Thiery I J Am Mosq Control Assoc; 1995 Dec; 11(4):485-8. PubMed ID: 8825516 [TBL] [Abstract][Full Text] [Related]
10. Isolation, geographical diversity and insecticidal activity of Bacillus thuringiensis from soils in Spain. Quesada-Moraga E; García-Tóvar E; Valverde-García P; Santiago-Alvarez C Microbiol Res; 2004; 159(1):59-71. PubMed ID: 15160608 [TBL] [Abstract][Full Text] [Related]
11. [Evaluation of the triflumuron and the mixture of Bacillus thuringiensis plus Bacillus sphaericus for control of the immature stages of Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae) in catch basins]. Giraldo-Calderón GI; Pérez M; Morales CA; Ocampo CB Biomedica; 2008 Jun; 28(2):224-33. PubMed ID: 18719724 [TBL] [Abstract][Full Text] [Related]
12. Synergism between wild-type Bacillus thuringiensis subsp. israelensis and B. sphaericus strains: a study based on isobolographic analysis and histopathology. Sreshty MA; Kumar KP; Murty US Acta Trop; 2011 Apr; 118(1):14-20. PubMed ID: 21211506 [TBL] [Abstract][Full Text] [Related]
13. WDP formulations using a novel mosquitocidal bacteria, Bacillus thuringiensis subsp. israelensis/tochigiensis (VCRC B-474) - Development and storage stability. Shankar K; Prabakaran G; Manonmani AM Acta Trop; 2019 May; 193():158-162. PubMed ID: 30562476 [TBL] [Abstract][Full Text] [Related]
14. [Toxicity of isolates of Bacillus thuringiensis from Wroclaw against larvae of Aedes aegypti]. Lonc E; Kucińska J; Rydzanicz K Wiad Parazytol; 2001; 47(3):297-303. PubMed ID: 16894738 [TBL] [Abstract][Full Text] [Related]
15. Molecular characterization of mosquitocidal Bacillus sphaericus isolated from Tamil Nadu, India. Prabhu DI; Sankar SG; Vasan PT; Piriya PS; Selvan BK; Vennison SJ Acta Trop; 2013 Sep; 127(3):158-64. PubMed ID: 23648218 [TBL] [Abstract][Full Text] [Related]
16. A novel mosquitocidal Bacillus thuringiensis strain LLP29 isolated from the phylloplane of Magnolia denudata. Zhang L; Huang E; Lin J; Gelbic I; Zhang Q; Guan Y; Huang T; Guan X Microbiol Res; 2010 Feb; 165(2):133-41. PubMed ID: 19577911 [TBL] [Abstract][Full Text] [Related]
17. Characterization of Bacillus thuringiensis isolates with potential for control of Aedes aegypti (Linnaeus, 1762) (Diptera: Culicidae). Santos FP; Lopes J; Vilas-Bôas GT; Zequi JA Acta Trop; 2012 Apr; 122(1):64-70. PubMed ID: 22178674 [TBL] [Abstract][Full Text] [Related]
18. [Influence of biotic factors on the efficacy of Bacillus thuringiensis var. Israelensis against Aedes aegypti (Diptera: Culicidae)]. Corbillón Porraspita CO; González Rizo A; Menéndez Díaz Z; Companioni Ibañez A; Bruzón Aguila RY; Díaz Pérez M; Gato Armas R Rev Cubana Med Trop; 2012; 64(3):235-43. PubMed ID: 23424800 [TBL] [Abstract][Full Text] [Related]
19. [Toxic activity of Bacillus Thuringiensis isolates to Aedes Aegypti (L.) (Diptera: Culicidae) larvae]. da Costa JR; Rossi JR; Marucci SC; da C Alves EC; Volpe HX; Ferraudo AS; Lemos MV; Desidério JA Neotrop Entomol; 2010; 39(5):757-66. PubMed ID: 21120386 [TBL] [Abstract][Full Text] [Related]
20. A preliminary study of the bioactivity of vegetative proteins extracted from Malaysian Bacillus thuringiensis isolates. Ramasamy B; Nadarajah VD; Soong ZK; Lee HL; Mohammad SM Trop Biomed; 2008 Apr; 25(1):64-74. PubMed ID: 18600206 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]