These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 23701897)

  • 1. Whole arm manipulation planning based on feedback velocity fields and sampling-based techniques.
    Talaei B; Abdollahi F; Talebi HA; Omidi Karkani E
    ISA Trans; 2013 Sep; 52(5):684-91. PubMed ID: 23701897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reaching to grasp with a multi-jointed arm. I. Computational model.
    Torres EB; Zipser D
    J Neurophysiol; 2002 Nov; 88(5):2355-67. PubMed ID: 12424277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A bio-inspired kinematic controller for obstacle avoidance during reaching tasks with real robots.
    Srinivasa N; Bhattacharyya R; Sundareswara R; Lee C; Grossberg S
    Neural Netw; 2012 Nov; 35():54-69. PubMed ID: 22954479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional kinematic analysis of influence of hand orientation and joint limits on the control of arm postures and movements.
    Wang X
    Biol Cybern; 1999 Jun; 80(6):449-63. PubMed ID: 10420570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cooperative Dynamic Motion Planning for Dual Manipulator Arms Based on RRT*Smart-AD Algorithm.
    Long H; Li G; Zhou F; Chen T
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental validation of a reach-and grasp optimization algorithm inspired to human arm-hand control.
    Cordella F; Zollo L; Salerno A; Guglielmelli E; Siciliano B
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():8150-3. PubMed ID: 22256233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual filtering in operational and joint spaces for reaching and grasping.
    Lopez L; Quinton JC; Mezouar Y
    Cogn Process; 2015 Sep; 16 Suppl 1():293-7. PubMed ID: 26232193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redundancy resolution of the human arm and an upper limb exoskeleton.
    Kim H; Miller LM; Byl N; Abrams GM; Rosen J
    IEEE Trans Biomed Eng; 2012 Jun; 59(6):1770-9. PubMed ID: 22510944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinematics and Singularity Analysis of a 7-DOF Redundant Manipulator.
    Shi X; Guo Y; Chen X; Chen Z; Yang Z
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An exoskeleton arm optimal configuration determination using inverse kinematics and genetic algorithm.
    Głowiński S; Błażejewski A
    Acta Bioeng Biomech; 2019; 21(1):45-53. PubMed ID: 31197289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An identification technique for evaluating body segment parameters in the upper extremity from manipulator-hand contact forces and arm kinematics.
    Kodek T; Munih M
    Clin Biomech (Bristol, Avon); 2006 Aug; 21(7):710-6. PubMed ID: 16675082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A New Artificial Neural Network Approach in Solving Inverse Kinematics of Robotic Arm (Denso VP6242).
    Almusawi AR; Dülger LC; Kapucu S
    Comput Intell Neurosci; 2016; 2016():5720163. PubMed ID: 27610129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Operational space trajectory tracking control of robot manipulators endowed with a primary controller of synthetic joint velocity.
    Moreno-Valenzuela J; González-Hernández L
    ISA Trans; 2011 Jan; 50(1):131-40. PubMed ID: 20800835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Static single-arm force generation with kinematic constraints.
    Pan P; Peshkin MA; Colgate JE; Lynch KM
    J Neurophysiol; 2005 May; 93(5):2752-65. PubMed ID: 15703233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A system-level mathematical model of Basal Ganglia motor-circuit for kinematic planning of arm movements.
    Salimi-Badr A; Ebadzadeh MM; Darlot C
    Comput Biol Med; 2018 Jan; 92():78-89. PubMed ID: 29156412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinematic analysis of a flexible six-DOF parallel mechanism.
    Jing FS; Tan M; Hou ZG; Liang ZZ; Wang YK; Gupta MM; Nikiforuk PN
    IEEE Trans Syst Man Cybern B Cybern; 2006 Apr; 36(2):379-89. PubMed ID: 16602597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Winching up heavy loads with a compliant arm: a new local joint controller.
    Schneider A; Cruse H; Schmitz J
    Biol Cybern; 2008 May; 98(5):413-26. PubMed ID: 18414891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fuzzy integral-based gaze control architecture incorporated with modified-univector field-based navigation for humanoid robots.
    Yoo JK; Kim JH
    IEEE Trans Syst Man Cybern B Cybern; 2012 Feb; 42(1):125-39. PubMed ID: 21878418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The central nervous system does not minimize energy cost in arm movements.
    Kistemaker DA; Wong JD; Gribble PL
    J Neurophysiol; 2010 Dec; 104(6):2985-94. PubMed ID: 20884757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Predictable Obstacle Avoidance Model Based on Geometric Configuration of Redundant Manipulators for Motion Planning.
    Ju F; Jin H; Wang B; Zhao J
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.