BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 2370192)

  • 1. Boron neutron capture enhancement of 252Cf brachytherapy.
    Beach JL; Schroy CB; Ashtari M; Harris MR; Maruyama Y
    Int J Radiat Oncol Biol Phys; 1990 Jun; 18(6):1421-7. PubMed ID: 2370192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of augmentation of 252Cf implant by 10B and 157Gd neutron capture.
    Wierzbicki JG; Maruyama Y; Porter AT
    Med Phys; 1994 Jun; 21(6):787-90. PubMed ID: 7935215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dosimetry of 252Cf sources for neutron radiotherapy with and without augmentation by boron neutron capture therapy.
    Yanch JC; Zamenhof RG
    Radiat Res; 1992 Sep; 131(3):249-56. PubMed ID: 1438684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Boron neutron capture therapy for the treatment of cerebral gliomas. I. Theoretical evaluation of the efficacy of various neutron beams.
    Zamenhof RG; Murray BW; Brownell GL; Wellum GR; Tolpin EI
    Med Phys; 1975; 2(2):47-60. PubMed ID: 1186617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A radiobiological model for the relative biological effectiveness of high-dose-rate 252Cf brachytherapy.
    Rivard MJ; Melhus CS; Zinkin HD; Stapleford LJ; Evans KE; Wazer DE; Odlozilíková A
    Radiat Res; 2005 Sep; 164(3):319-23. PubMed ID: 16137205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measured microdosimetric spectra and therapeutic potential of boron neutron capture enhancement of 252Cf brachytherapy.
    Burmeister J; Kota C; Maughan RL
    Radiat Res; 2005 Sep; 164(3):312-8. PubMed ID: 16137204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurements and calculations of thermal neutron fluence rate and neutron energy spectra resulting from moderation of 252Cf fast neutrons: applications for neutron capture therapy.
    Rivard MJ
    Med Phys; 2000 Aug; 27(8):1761-9. PubMed ID: 10984222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental determination of the thermal neutron flux around two different types of high intensity 252Cf sources.
    Schmidt B; Maughan RL; Yudelev M; Kota C; Wanwilairat S
    Med Phys; 1999 Jan; 26(1):83-6. PubMed ID: 9949402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brain tumour and infiltrations dosimetry of boron neutron capture therapy combined with 252Cf brachytherapy.
    Brandão SF; Campos TP
    Radiat Prot Dosimetry; 2012 Apr; 149(3):289-96. PubMed ID: 21705767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Moderated 252Cf neutron energy spectra in brain tissue and calculated boron neutron capture dose.
    Rivard MJ; Zamenhof RG
    Appl Radiat Isot; 2004 Nov; 61(5):753-7. PubMed ID: 15308139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neutron dosimetry for a general 252Cf brachytherapy source.
    Rivard MJ
    Med Phys; 2000 Dec; 27(12):2803-15. PubMed ID: 11190964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A phase I trial of neutron brachytherapy for the treatment of malignant gliomas.
    Patchell RA; Yaes RJ; Beach L; Kryscio RJ; Davis DG; Tibbs PA; Young B
    Br J Radiol; 1997 Nov; 70(839):1162-8. PubMed ID: 9536908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effectiveness of the high-LET radiations from the boron neutron capture [10B(n,α) 7Li] reaction determined for induction of chromosome aberrations and apoptosis in lymphocytes of human blood samples.
    Schmid TE; Canella L; Kudejova P; Wagner FM; Röhrmoser A; Schmid E
    Radiat Environ Biophys; 2015 Mar; 54(1):91-102. PubMed ID: 25428113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of a californium-based epithermal neutron beam for neutron capture therapy.
    Yanch JC; Kim JK; Wilson MJ
    Phys Med Biol; 1993 Aug; 38(8):1145-55. PubMed ID: 8367525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clinical brachytherapy with neutron emitting 252Cf sources and adherence to AAPM TG-43 dosimetry protocol.
    Rivard MJ; Wierzbicki JG; Van den Heuvel F; Martin RC; McMahon RR
    Med Phys; 1999 Jan; 26(1):87-96. PubMed ID: 9949403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of high-activity 252Cf sources for neutron brachytherapy.
    Martin RC; Laxson RR; Miller JH; Wierzbicki JG; Rivard MJ; Marsh DL
    Appl Radiat Isot; 1997; 48(10-12):1567-70. PubMed ID: 9463877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduction of the gamma-ray component from 252Cf fission neutron source--optimization for biological irradiations and comparison with MCNP code.
    Endo S; Stevens DL; Bonner P; Hill MA; Nikjoo H; Dalla Vecchia M; Komatsu K; Hoshi M; Goodhead DT
    Phys Med Biol; 1999 May; 44(5):1207-18. PubMed ID: 10368013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficacy of brachytherapy with californium-252 neutrons versus cesium-137 photons for eradication of bulky localized cervical cancer: single-institution study.
    Maruyama Y; van Nagell JR; Yoneda J; Donaldson E; Gallion H; Higgins R; Powell D; Turner C; Kryscio R
    J Natl Cancer Inst; 1988 Jun; 80(7):501-6. PubMed ID: 3367388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Biological action of the radiation from high-activity 252Cf sources].
    Vaĭson AA; Meshcherikova VV; Chekhonadskiĭ VN; Spasokukotskaia ON
    Med Radiol (Mosk); 1987 Mar; 32(3):65-9. PubMed ID: 3561212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction between the biological effects of high- and low-LET radiation dose components in a mixed field exposure.
    Mason AJ; Giusti V; Green S; Munck af Rosenschöld P; Beynon TD; Hopewell JW
    Int J Radiat Biol; 2011 Dec; 87(12):1162-72. PubMed ID: 21923301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.