These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 2370197)

  • 21. Multi-wavelength raman imaging using a small-diameter image guide with a dimension-reduction imaging array.
    Carter JC; Scrivens WA; Myrick ML; Angel SM
    Appl Spectrosc; 2003 Jul; 57(7):761-7. PubMed ID: 14658653
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Home-made N-channel fiber-optic spectrometer from a web camera.
    Sumriddetchkajorn S; Intaravanne Y
    Appl Spectrosc; 2012 Oct; 66(10):1156-62. PubMed ID: 23031698
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Large-area contrast of a fiber-optic coupled x-ray image intensifier.
    Davis VL; Glascock HH
    Med Phys; 1977; 4(3):211-4. PubMed ID: 882055
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Liquid light guides versus fiber light guides in clinical near-infrared spectroscopy.
    Gagnon RE; Jue M; Macnab AJ
    J Biomed Opt; 2003 Jan; 8(1):148-51. PubMed ID: 12542389
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Measurements of relative depth doses and Cerenkov light using a scintillating fiber-optic dosimeter with Co-60 radiotherapy source.
    Jang KW; Yoo WJ; Moon J; Han KT; Park JY; Lee B
    Appl Radiat Isot; 2012 Jan; 70(1):274-7. PubMed ID: 21889353
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Individual cell migration analysis using fiber-optic bundles.
    DiCesare C; Biran I; Walt DR
    Anal Bioanal Chem; 2005 May; 382(1):37-43. PubMed ID: 15900449
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Flexible Fiber-Optic High-Speed Imaging of Vocal Fold Vibration: A Preliminary Report.
    Woo P; Baxter P
    J Voice; 2017 Mar; 31(2):175-181. PubMed ID: 28325351
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Our solution for fusion of simultaneusly acquired whole body scintigrams and optical images, as usesful tool in clinical practice in patients with differentiated thyroid carcinomas after radioiodine therapy. A useful tool in clinical practice.
    Matovic M; Jankovic M; Barjaktarovic M; Jeremic M
    Hell J Nucl Med; 2017; 20 Suppl():159. PubMed ID: 29324929
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fiber-optic-bundle-based optical coherence tomography.
    Xie T; Mukai D; Guo S; Brenner M; Chen Z
    Opt Lett; 2005 Jul; 30(14):1803-5. PubMed ID: 16092351
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simultaneous measurements of pure scintillation and Cerenkov signals in an integrated fiber-optic dosimeter for electron beam therapy dosimetry.
    Yoo WJ; Shin SH; Jeon D; Hong S; Kim SG; Sim HI; Jang KW; Cho S; Lee B
    Opt Express; 2013 Nov; 21(23):27770-9. PubMed ID: 24514292
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fabrication and experimental observation of monolithic multi-air-core fiber array for image transmission.
    Wang J; Yang X; Wang L
    Opt Express; 2008 May; 16(11):7703-8. PubMed ID: 18545479
    [TBL] [Abstract][Full Text] [Related]  

  • 32. All-optical photoacoustic imaging system using fiber ultrasound probe and hollow optical fiber bundle.
    Miida Y; Matsuura Y
    Opt Express; 2013 Sep; 21(19):22023-33. PubMed ID: 24104094
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Remote in vivo imaging of human skin corneocytes by means of an optical fiber bundle.
    Dromard T; Ravaine V; Ravaine S; Lévêque JL; Sojic N
    Rev Sci Instrum; 2007 May; 78(5):053709. PubMed ID: 17552827
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Water-equivalent one-dimensional scintillating fiber-optic dosimeter for measuring therapeutic photon beam.
    Moon J; Jang KW; Yoo WJ; Han KT; Park JY; Lee B
    Appl Radiat Isot; 2012 Nov; 70(11):2627-30. PubMed ID: 22944534
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of skew rays on the sensitivity and signal-to-noise ratio of a fiber-optic surface-plasmon-resonance sensor: a theoretical study.
    Dwivedi YS; Sharma AK; Gupta BD
    Appl Opt; 2007 Jul; 46(21):4563-9. PubMed ID: 17609701
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An adaptive technique for digital noise suppression in on-line portal imaging.
    Leszczynski KW; Shalev S; Cosby NS
    Phys Med Biol; 1990 Mar; 35(3):429-39. PubMed ID: 2320670
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Therapy imaging: a signal-to-noise analysis of a fluoroscopic imaging system for radiotherapy localization.
    Munro P; Rawlinson JA; Fenster A
    Med Phys; 1990; 17(5):763-72. PubMed ID: 2233562
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improved image quality of cone beam CT scans for radiotherapy image guidance using fiber-interspaced antiscatter grid.
    Stankovic U; van Herk M; Ploeger LS; Sonke JJ
    Med Phys; 2014 Jun; 41(6):061910. PubMed ID: 24877821
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On-line optical fiber detection in a preparative free-flow electrofocusing apparatus.
    Bottenus D; Ivory CF
    Biotechnol Prog; 2006; 22(3):842-6. PubMed ID: 16739969
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An optical fiber infrasound sensor: a new lower limit on atmospheric pressure noise between 1 and 10 Hz.
    Zumberge MA; Berger J; Hedlin MA; Husmann E; Nooner S; Hilt R; Widmer-Schnidrig R
    J Acoust Soc Am; 2003 May; 113(5):2474-9. PubMed ID: 12765367
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.