These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 23702045)

  • 1. A rolling constraint reproduces ground reaction forces and moments in dynamic simulations of walking, running, and crouch gait.
    Hamner SR; Seth A; Steele KM; Delp SL
    J Biomech; 2013 Jun; 46(10):1772-6. PubMed ID: 23702045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Full-Body Musculoskeletal Model for Muscle-Driven Simulation of Human Gait.
    Rajagopal A; Dembia CL; DeMers MS; Delp DD; Hicks JL; Delp SL
    IEEE Trans Biomed Eng; 2016 Oct; 63(10):2068-79. PubMed ID: 27392337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamically adjustable foot-ground contact model to estimate ground reaction force during walking and running.
    Jung Y; Jung M; Ryu J; Yoon S; Park SK; Koo S
    Gait Posture; 2016 Mar; 45():62-8. PubMed ID: 26979885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Muscle contributions to fore-aft and vertical body mass center accelerations over a range of running speeds.
    Hamner SR; Delp SL
    J Biomech; 2013 Feb; 46(4):780-7. PubMed ID: 23246045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predictive Simulations of Neuromuscular Coordination and Joint-Contact Loading in Human Gait.
    Lin YC; Walter JP; Pandy MG
    Ann Biomed Eng; 2018 Aug; 46(8):1216-1227. PubMed ID: 29671152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tibiofemoral contact forces during walking, running and sidestepping.
    Saxby DJ; Modenese L; Bryant AL; Gerus P; Killen B; Fortin K; Wrigley TV; Bennell KL; Cicuttini FM; Lloyd DG
    Gait Posture; 2016 Sep; 49():78-85. PubMed ID: 27391249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a Subject-Specific Foot-Ground Contact Model for Walking.
    Jackson JN; Hass CJ; Fregly BJ
    J Biomech Eng; 2016 Sep; 138(9):0910021-09100212. PubMed ID: 27379886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A superellipsoid-plane model for simulating foot-ground contact during human gait.
    Lopes DS; Neptune RR; Ambrósio JA; Silva MT
    Comput Methods Biomech Biomed Engin; 2016; 19(9):954-63. PubMed ID: 26325481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tibiofemoral Contact Forces in the Anterior Cruciate Ligament-Reconstructed Knee.
    Saxby DJ; Bryant AL; Modenese L; Gerus P; Killen BA; Konrath J; Fortin K; Wrigley TV; Bennell KL; Cicuttini FM; Vertullo C; Feller JA; Whitehead T; Gallie P; Lloyd DG
    Med Sci Sports Exerc; 2016 Nov; 48(11):2195-2206. PubMed ID: 27337173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Joint moments and contact forces in the foot during walking.
    Kim Y; Lee KM; Koo S
    J Biomech; 2018 Jun; 74():79-85. PubMed ID: 29735264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characteristics of the vertical ground reaction force component prior to gait transition.
    Li L; Hamill J
    Res Q Exerc Sport; 2002 Sep; 73(3):229-37. PubMed ID: 12230329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimates of muscle function in human gait depend on how foot-ground contact is modelled.
    Dorn TW; Lin YC; Pandy MG
    Comput Methods Biomech Biomed Engin; 2012; 15(6):657-68. PubMed ID: 21614707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generalization of a muscle-reflex control model to 3D walking.
    Song S; Geyer H
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():7463-6. PubMed ID: 24111471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional data-tracking dynamic optimization simulations of human locomotion generated by direct collocation.
    Lin YC; Pandy MG
    J Biomech; 2017 Jul; 59():1-8. PubMed ID: 28583674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Muscle contributions to vertical and fore-aft accelerations are altered in subjects with crouch gait.
    Steele KM; Seth A; Hicks JL; Schwartz MH; Delp SL
    Gait Posture; 2013 May; 38(1):86-91. PubMed ID: 23200083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Concurrent prediction of ground reaction forces and moments and tibiofemoral contact forces during walking using musculoskeletal modelling.
    Peng Y; Zhang Z; Gao Y; Chen Z; Xin H; Zhang Q; Fan X; Jin Z
    Med Eng Phys; 2018 Feb; 52():31-40. PubMed ID: 29269224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces.
    Gerus P; Sartori M; Besier TF; Fregly BJ; Delp SL; Banks SA; Pandy MG; D'Lima DD; Lloyd DG
    J Biomech; 2013 Nov; 46(16):2778-86. PubMed ID: 24074941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crouched posture maximizes ground reaction forces generated by muscles.
    Hoang HX; Reinbolt JA
    Gait Posture; 2012 Jul; 36(3):405-8. PubMed ID: 22542242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coordination of two-joint rectus femoris and hamstrings during the swing phase of human walking and running.
    Prilutsky BI; Gregor RJ; Ryan MM
    Exp Brain Res; 1998 Jun; 120(4):479-86. PubMed ID: 9655233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.