BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 23702189)

  • 1. Site-directed mutagenesis of methionine residues for improving the oxidative stability of α-amylase from Thermotoga maritima.
    Ozturk H; Ece S; Gundeger E; Evran S
    J Biosci Bioeng; 2013 Oct; 116(4):449-51. PubMed ID: 23702189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and characterization of a novel intracellular alkaline alpha-amylase from the hyperthermophilic bacterium Thermotoga maritima MSB8.
    Ballschmiter M; Fütterer O; Liebl W
    Appl Environ Microbiol; 2006 Mar; 72(3):2206-11. PubMed ID: 16517673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-based replacement of methionine residues at the catalytic domains with serine significantly improves the oxidative stability of alkaline amylase from alkaliphilic Alkalimonas amylolytica.
    Yang H; Liu L; Li J; Du G; Chen J
    Biotechnol Prog; 2012; 28(5):1271-7. PubMed ID: 22887900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cloning and characterization of a thermostable intracellular alpha-amylase gene from the hyperthermophilic bacterium Thermotoga maritima MSB8.
    Lim WJ; Park SR; An CL; Lee JY; Hong SY; Shin EC; Kim EJ; Kim JO; Kim H; Yun HD
    Res Microbiol; 2003 Dec; 154(10):681-7. PubMed ID: 14643406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of Thermotoga maritima MSB8 GH57 α-amylase AmyC as a glycogen-branching enzyme with high hydrolytic activity.
    Zhang X; Leemhuis H; Janeček Š; Martinovičová M; Pijning T; van der Maarel MJEC
    Appl Microbiol Biotechnol; 2019 Aug; 103(15):6141-6151. PubMed ID: 31190240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of the alcoholytic activity of alpha-amylase AmyA from Thermotoga maritima MSB8 (DSM 3109) by site-directed mutagenesis.
    Damián-Almazo JY; Moreno A; López-Munguía A; Soberón X; González-Muñoz F; Saab-Rincón G
    Appl Environ Microbiol; 2008 Aug; 74(16):5168-77. PubMed ID: 18552192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Replacement of methionine 208 in a truncated Bacillus sp. TS-23 alpha-amylase with oxidation-resistant leucine enhances its resistance to hydrogen peroxide.
    Lin LL; Lo HF; Chiang WY; Hu HY; Hsu WH; Chang CT
    Curr Microbiol; 2003 Mar; 46(3):211-6. PubMed ID: 12567245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plant cell calcium-rich environment enhances thermostability of recombinantly produced alpha-amylase from the hyperthermophilic bacterium Thermotoga maritime.
    Santa-Maria MC; Chou CJ; Yencho GC; Haigler CH; Thompson WF; Kelly RM; Sosinski B
    Biotechnol Bioeng; 2009 Dec; 104(5):947-56. PubMed ID: 19585523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering of the alpha-amylase from Geobacillus stearothermophilus US100 for detergent incorporation.
    Khemakhem B; Ali MB; Aghajari N; Juy M; Haser R; Bejar S
    Biotechnol Bioeng; 2009 Feb; 102(2):380-9. PubMed ID: 18951544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pyrococcus furiosus alpha-amylase is stabilized by calcium and zinc.
    Savchenko A; Vieille C; Kang S; Zeikus JG
    Biochemistry; 2002 May; 41(19):6193-201. PubMed ID: 11994016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement of thermal stability of a mutagenised α-amylase by manipulation of the calcium-binding site.
    Ghollasi M; Ghanbari-Safari M; Khajeh K
    Enzyme Microb Technol; 2013 Dec; 53(6-7):406-13. PubMed ID: 24315644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-guided systems-level engineering of oxidation-prone methionine residues in catalytic domain of an alkaline α-amylase from Alkalimonas amylolytica for significant improvement of both oxidative stability and catalytic efficiency.
    Yang H; Liu L; Shin HD; Li J; Du G; Chen J
    PLoS One; 2013; 8(3):e57403. PubMed ID: 23554859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep Eutectic Solvents as New Reaction Media to Produce Alkyl-Glycosides Using Alpha-Amylase from
    Miranda-Molina A; Xolalpa W; Strompen S; Arreola-Barroso R; Olvera L; López-Munguía A; Castillo E; Saab-Rincon G
    Int J Mol Sci; 2019 Oct; 20(21):. PubMed ID: 31683666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Site-directed mutagenesis and CBM engineering of Cel5A (Thermotoga maritima).
    Mahadevan SA; Wi SG; Lee DS; Bae HJ
    FEMS Microbiol Lett; 2008 Oct; 287(2):205-11. PubMed ID: 18752623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing structural determinants specifying high thermostability in Bacillus licheniformis alpha-amylase.
    Declerck N; Machius M; Wiegand G; Huber R; Gaillardin C
    J Mol Biol; 2000 Aug; 301(4):1041-57. PubMed ID: 10966804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering activity and stability of Thermotoga maritima glutamate dehydrogenase. II: construction of a 16-residue ion-pair network at the subunit interface.
    Lebbink JH; Knapp S; van der Oost J; Rice D; Ladenstein R; de Vos WM
    J Mol Biol; 1999 Jun; 289(2):357-69. PubMed ID: 10366510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced activity of Thermotoga maritima cellulase 12A by mutating a unique surface loop.
    Cheng YS; Ko TP; Huang JW; Wu TH; Lin CY; Luo W; Li Q; Ma Y; Huang CH; Wang AH; Liu JR; Guo RT
    Appl Microbiol Biotechnol; 2012 Aug; 95(3):661-9. PubMed ID: 22170108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of the novel alpha-amylase AmyC from Thermotoga maritima.
    Dickmanns A; Ballschmiter M; Liebl W; Ficner R
    Acta Crystallogr D Biol Crystallogr; 2006 Mar; 62(Pt 3):262-70. PubMed ID: 16510973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Site-directed mutagenesis of the calcium-binding site of alpha-amylase of Bacillus licheniformis.
    Priyadharshini R; Gunasekaran P
    Biotechnol Lett; 2007 Oct; 29(10):1493-9. PubMed ID: 17598074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-based engineering of histidine residues in the catalytic domain of α-amylase from Bacillus subtilis for improved protein stability and catalytic efficiency under acidic conditions.
    Yang H; Liu L; Shin HD; Chen RR; Li J; Du G; Chen J
    J Biotechnol; 2013 Mar; 164(1):59-66. PubMed ID: 23262127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.