These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 23702545)

  • 1. Mining minimal motif pair sets maximally covering interactions in a protein-protein interaction network.
    Boyen P; Neven F; van Dyck D; Valentim FL; van Dijk AD
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(1):73-86. PubMed ID: 23702545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SLIDER: a generic metaheuristic for the discovery of correlated motifs in protein-protein interaction networks.
    Boyen P; Van Dyck D; Neven F; van Ham RC; van Dijk AD
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(5):1344-57. PubMed ID: 21282865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complex discovery from weighted PPI networks.
    Liu G; Wong L; Chua HN
    Bioinformatics; 2009 Aug; 25(15):1891-7. PubMed ID: 19435747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discovering motif pairs at interaction sites from protein sequences on a proteome-wide scale.
    Li H; Li J; Wong L
    Bioinformatics; 2006 Apr; 22(8):989-96. PubMed ID: 16446278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A correlated motif approach for finding short linear motifs from protein interaction networks.
    Tan SH; Hugo W; Sung WK; Ng SK
    BMC Bioinformatics; 2006 Nov; 7():502. PubMed ID: 17107624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clustering-based approach for predicting motif pairs from protein interaction data.
    Leung HC; Siu MH; Yiu SM; Chin FY; Sung KW
    J Bioinform Comput Biol; 2009 Aug; 7(4):701-16. PubMed ID: 19634199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finding linear motif pairs from protein interaction networks: a probabilistic approach.
    Leung HC; Siu MH; Yiu SM; Chin FY; Sung KW
    Comput Syst Bioinformatics Conf; 2007; 6():111-9. PubMed ID: 17951817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. N-terminal N-myristoylation of proteins: prediction of substrate proteins from amino acid sequence.
    Maurer-Stroh S; Eisenhaber B; Eisenhaber F
    J Mol Biol; 2002 Apr; 317(4):541-57. PubMed ID: 11955008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the approximation of optimal structures for RNA-RNA interaction.
    Mneimneh S
    IEEE/ACM Trans Comput Biol Bioinform; 2009; 6(4):682-8. PubMed ID: 19875865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling protein interacting groups by quasi-bicliques: complexity, algorithm, and application.
    Liu X; Li J; Wang L
    IEEE/ACM Trans Comput Biol Bioinform; 2010; 7(2):354-64. PubMed ID: 20431154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Efficient Exact Algorithm for the Motif Stem Search Problem over Large Alphabets.
    Yu Q; Huo H; Vitter JS; Huan J; Nekrich Y
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(2):384-97. PubMed ID: 26357225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved algorithms for matching r-separated sets with applications to protein structure alignment.
    Poleksic A
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(1):226-9. PubMed ID: 23702560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Support vector machine learning from heterogeneous data: an empirical analysis using protein sequence and structure.
    Lewis DP; Jebara T; Noble WS
    Bioinformatics; 2006 Nov; 22(22):2753-60. PubMed ID: 16966363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. k-Partite cliques of protein interactions: A novel subgraph topology for functional coherence analysis on PPI networks.
    Liu Q; Chen YP; Li J
    J Theor Biol; 2014 Jan; 340():146-54. PubMed ID: 24056214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Divide and Conquer Approach to Contact Map Overlap Problem Using 2D-Pattern Mining of Protein Contact Networks.
    Koneru SV; Bhavani DS
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(4):729-37. PubMed ID: 26357311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein function prediction using guilty by association from interaction networks.
    Piovesan D; Giollo M; Ferrari C; Tosatto SC
    Amino Acids; 2015 Dec; 47(12):2583-92. PubMed ID: 26215734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finding Patterns in Protein Sequences by Using a Hybrid Multiobjective Teaching Learning Based Optimization Algorithm.
    González-Álvarez DL; Vega-Rodríguez MA; Rubio-Largo Á
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(3):656-66. PubMed ID: 26357276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of protein complexes using a protein ranking algorithm.
    Zaki N; Berengueres J; Efimov D
    Proteins; 2012 Oct; 80(10):2459-68. PubMed ID: 22685080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A polynomial-time algorithm for the matching of crossing contact-map patterns.
    Gramm J
    IEEE/ACM Trans Comput Biol Bioinform; 2004; 1(4):171-80. PubMed ID: 17051699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parameterized algorithmics for finding connected motifs in biological networks.
    Betzler N; van Bevern R; Fellows MR; Komusiewicz C; Niedermeier R
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(5):1296-308. PubMed ID: 21282862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.