These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 23702574)
1. Use of an EZ-Tn5-based random mutagenesis system to create a Zymomonas mobilis with significant tolerance to heat stress and malnutrition. Jia X; Wei N; Wang T; Wang H J Ind Microbiol Biotechnol; 2013 Aug; 40(8):811-22. PubMed ID: 23702574 [TBL] [Abstract][Full Text] [Related]
2. Use of a Tn5-based transposon system to create a cost-effective Zymomonas mobilis for ethanol production from lignocelluloses. Zhang X; Wang T; Zhou W; Jia X; Wang H Microb Cell Fact; 2013 May; 12():41. PubMed ID: 23635356 [TBL] [Abstract][Full Text] [Related]
3. Engineered Zymomonas mobilis for salt tolerance using EZ-Tn5-based transposon insertion mutagenesis system. Wang JL; Wu B; Qin H; You Y; Liu S; Shui ZX; Tan FR; Wang YW; Zhu QL; Li YB; Ruan ZY; Ma KD; Dai LC; Hu GQ; He MX Microb Cell Fact; 2016 Jun; 15(1):101. PubMed ID: 27287016 [TBL] [Abstract][Full Text] [Related]
4. Very high gravity ethanol and fatty acid production of Zymomonas mobilis without amino acid and vitamin. Wang H; Cao S; Wang WT; Wang KT; Jia X J Ind Microbiol Biotechnol; 2016 Jun; 43(6):861-71. PubMed ID: 27033536 [TBL] [Abstract][Full Text] [Related]
5. Physiological effects of overexpressed sigma factors on fermentative stress response of Zymomonas mobilis. Benoliel T; Rubini MR; de Souza Baptistello C; Janner CR; Vieira VR; Torres FA; Walmsley A; de Moraes LMP Braz J Microbiol; 2020 Mar; 51(1):65-75. PubMed ID: 31701383 [TBL] [Abstract][Full Text] [Related]
6. Improved high-temperature ethanol production from sweet sorghum juice using Zymomonas mobilis overexpressing groESL genes. Kaewchana A; Techaparin A; Boonchot N; Thanonkeo P; Klanrit P Appl Microbiol Biotechnol; 2021 Dec; 105(24):9419-9431. PubMed ID: 34787692 [TBL] [Abstract][Full Text] [Related]
7. Improving cellulosic ethanol fermentability of Zymomonas mobilis by overexpression of sodium ion tolerance gene ZMO0119. Gao X; Gao Q; Bao J J Biotechnol; 2018 Sep; 282():32-37. PubMed ID: 29807049 [TBL] [Abstract][Full Text] [Related]
8. Open fermentative production of fuel ethanol from food waste by an acid-tolerant mutant strain of Zymomonas mobilis. Ma K; Ruan Z; Shui Z; Wang Y; Hu G; He M Bioresour Technol; 2016 Mar; 203():295-302. PubMed ID: 26744803 [TBL] [Abstract][Full Text] [Related]
9. Impact of hfq and sigE on the tolerance of Zymomonas mobilis ZM4 to furfural and acetic acid stresses. Nouri H; Moghimi H; Marashi SA; Elahi E PLoS One; 2020; 15(10):e0240330. PubMed ID: 33035245 [TBL] [Abstract][Full Text] [Related]
10. Respiration-deficient mutants of Zymomonas mobilis show improved growth and ethanol fermentation under aerobic and high temperature conditions. Hayashi T; Furuta Y; Furukawa K J Biosci Bioeng; 2011 Apr; 111(4):414-9. PubMed ID: 21236727 [TBL] [Abstract][Full Text] [Related]
11. Performance testing of Zymomonas mobilis metabolically engineered for cofermentation of glucose, xylose, and arabinose. Lawford HG; Rousseau JD Appl Biochem Biotechnol; 2002; 98-100():429-48. PubMed ID: 12018270 [TBL] [Abstract][Full Text] [Related]
12. Pantothenate auxotrophy in Zymomonas mobilis ZM4 is due to a lack of aspartate decarboxylase activity. Gliessman JR; Kremer TA; Sangani AA; Jones-Burrage SE; McKinlay JB FEMS Microbiol Lett; 2017 Jul; 364(13):. PubMed ID: 28655181 [TBL] [Abstract][Full Text] [Related]
13. Flocculating Zymomonas mobilis is a promising host to be engineered for fuel ethanol production from lignocellulosic biomass. Zhao N; Bai Y; Liu CG; Zhao XQ; Xu JF; Bai FW Biotechnol J; 2014 Mar; 9(3):362-71. PubMed ID: 24357469 [TBL] [Abstract][Full Text] [Related]
14. Comparison of glucose/xylose co-fermentation by recombinant Zymomonas mobilis under different genetic and environmental conditions. Ma Y; Dong H; Zou S; Hong J; Zhang M Biotechnol Lett; 2012 Jul; 34(7):1297-304. PubMed ID: 22421973 [TBL] [Abstract][Full Text] [Related]
15. Perspectives and new directions for bioprocess optimization using Zymomonas mobilis in the ethanol production. Todhanakasem T; Wu B; Simeon S World J Microbiol Biotechnol; 2020 Jul; 36(8):112. PubMed ID: 32656581 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of a recombinant Klebsiella oxytoca strain for ethanol production from cellulose by simultaneous saccharification and fermentation: comparison with native cellobiose-utilising yeast strains and performance in co-culture with thermotolerant yeast and Zymomonas mobilis. Golias H; Dumsday GJ; Stanley GA; Pamment NB J Biotechnol; 2002 Jun; 96(2):155-68. PubMed ID: 12039532 [TBL] [Abstract][Full Text] [Related]
17. Expression of a xylose-specific transporter improves ethanol production by metabolically engineered Zymomonas mobilis. Dunn KL; Rao CV Appl Microbiol Biotechnol; 2014 Aug; 98(15):6897-905. PubMed ID: 24839214 [TBL] [Abstract][Full Text] [Related]
19. irrE, an exogenous gene from Deinococcus radiodurans, improves the growth of and ethanol production by a Zymomonas mobilis strain under ethanol and acid stress. Zhang Y; Ma R; Zhao Z; Zhou Z; Lu W; Zhang W; Chen M J Microbiol Biotechnol; 2010 Jul; 20(7):1156-62. PubMed ID: 20668411 [TBL] [Abstract][Full Text] [Related]
20. Cloning, sequencing and expression of stress genes from the ethanol-producing bacterium Zymomonas mobilis: the groESL operon. Barbosa MF; Yomano LP; Ingram LO Gene; 1994 Oct; 148(1):51-7. PubMed ID: 7926837 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]