These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 23702655)

  • 61. Biopolymer filtration in corrugated nanochannels.
    Ollila ST; Denniston C; Karttunen M; Ala-Nissila T
    Phys Rev Lett; 2014 Mar; 112(11):118301. PubMed ID: 24702423
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Regeneration of glass nanofluidic chips through a multiple-step sequential thermochemical decomposition process at high temperatures.
    Xu Y; Wu Q; Shimatani Y; Yamaguchi K
    Lab Chip; 2015 Oct; 15(19):3856-61. PubMed ID: 26278885
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Contribution of water molecules in the spontaneous release of protein by graphene sheets.
    Liang LJ; Wang Q; Wu T; Sun TY; Kang Y
    Chemphyschem; 2013 Sep; 14(13):2902-9. PubMed ID: 23881843
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Nanofluidic charged-coupled devices for controlled DNA transport and separation.
    Nouri R; Guan W
    Nanotechnology; 2021 Jun; 32(34):. PubMed ID: 34081025
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Recent progress in graphene-related nanotechnologies.
    Frazier RM; Daly DT; Swatloski RP; Hathcock KW; South CR
    Recent Pat Nanotechnol; 2009; 3(3):164-76. PubMed ID: 19958282
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Role of Oxygen Functionalities in Graphene Oxide Architectural Laminate Subnanometer Spacing and Water Transport.
    Amadei CA; Montessori A; Kadow JP; Succi S; Vecitis CD
    Environ Sci Technol; 2017 Apr; 51(8):4280-4288. PubMed ID: 28333448
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Environmental performance of graphene-based 3D macrostructures.
    Yousefi N; Lu X; Elimelech M; Tufenkji N
    Nat Nanotechnol; 2019 Feb; 14(2):107-119. PubMed ID: 30617310
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A method for nanofluidic device prototyping using elastomeric collapse.
    Park SM; Huh YS; Craighead HG; Erickson D
    Proc Natl Acad Sci U S A; 2009 Sep; 106(37):15549-54. PubMed ID: 19717418
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Hybridized graphene: Nanoscale patchworks.
    Rubio A
    Nat Mater; 2010 May; 9(5):379-80. PubMed ID: 20414215
    [No Abstract]   [Full Text] [Related]  

  • 70. Quantitative evaluation of biological reaction kinetics in confined nanospaces.
    Yu J; Luo P; Xin C; Cao X; Zhang Y; Liu S
    Anal Chem; 2014 Aug; 86(16):8129-35. PubMed ID: 25034149
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Confinement effects on DNA hybridization in electrokinetic micro- and nanofluidic systems.
    Downs AM; McCallum C; Pennathur S
    Electrophoresis; 2019 Mar; 40(5):792-798. PubMed ID: 30597594
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Tunable ionic transport control inside a bio-inspired constructive bi-channel nanofluidic device.
    Zeng L; Yang Z; Zhang H; Hou X; Tian Y; Yang F; Zhou J; Li L; Jiang L
    Small; 2014 Feb; 10(4):793-801. PubMed ID: 24031024
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Graphene-Based Platform for Infrared Near-Field Nanospectroscopy of Water and Biological Materials in an Aqueous Environment.
    Khatib O; Wood JD; McLeod AS; Goldflam MD; Wagner M; Damhorst GL; Koepke JC; Doidge GP; Rangarajan A; Bashir R; Pop E; Lyding JW; Thiemens MH; Keilmann F; Basov DN
    ACS Nano; 2015 Aug; 9(8):7968-75. PubMed ID: 26223158
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Preconcentration of diluted biochemical samples using microchannel with integrated nanoscale Nafion membrane.
    Chao CC; Chiu PH; Yang RJ
    Biomed Microdevices; 2015 Apr; 17(2):25. PubMed ID: 25681049
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Fast water transport in graphene nanofluidic channels.
    Xie Q; Alibakhshi MA; Jiao S; Xu Z; Hempel M; Kong J; Park HG; Duan C
    Nat Nanotechnol; 2018 Mar; 13(3):238-245. PubMed ID: 29292381
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Approaches to modelling irradiation-induced processes in transmission electron microscopy.
    Skowron ST; Lebedeva IV; Popov AM; Bichoutskaia E
    Nanoscale; 2013 Aug; 5(15):6677-92. PubMed ID: 23783785
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Electrokinetic energy conversion in nanofluidic channels: addressing the loose ends in nanodevice efficiency.
    Bakli C; Chakraborty S
    Electrophoresis; 2015 Mar; 36(5):675-81. PubMed ID: 25258090
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Through a Window, Brightly: A Review of Selected Nanofabricated Thin-Film Platforms for Spectroscopy, Imaging, and Detection.
    Dwyer JR; Harb M
    Appl Spectrosc; 2017 Sep; 71(9):2051-2075. PubMed ID: 28714316
    [TBL] [Abstract][Full Text] [Related]  

  • 79. An in-mold packaging process for plastic fluidic devices.
    Yoo YE; Lee KH; Je TJ; Choi DS; Kim SK
    J Nanosci Nanotechnol; 2011 Jan; 11(1):233-8. PubMed ID: 21446432
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Fast diffusion of water nanodroplets on graphene.
    Ma M; Tocci G; Michaelides A; Aeppli G
    Nat Mater; 2016 Jan; 15(1):66-71. PubMed ID: 26480227
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.