These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 23702971)

  • 1. Cutaneous mechanisms of isometric ankle force control.
    Choi JT; Lundbye-Jensen J; Leukel C; Nielsen JB
    Exp Brain Res; 2013 Jul; 228(3):377-84. PubMed ID: 23702971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Error signals driving locomotor adaptation: cutaneous feedback from the foot is used to adapt movement during perturbed walking.
    Choi JT; Jensen P; Nielsen JB; Bouyer LJ
    J Physiol; 2016 Oct; 594(19):5673-84. PubMed ID: 27218896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vibrotactile stimulation of fast-adapting cutaneous afferents from the foot modulates proprioception at the ankle joint.
    Mildren RL; Bent LR
    J Appl Physiol (1985); 2016 Apr; 120(8):855-64. PubMed ID: 26823342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence suggesting a transcortical pathway from cutaneous foot afferents to tibialis anterior motoneurones in man.
    Nielsen J; Petersen N; Fedirchuk B
    J Physiol; 1997 Jun; 501 ( Pt 2)(Pt 2):473-84. PubMed ID: 9192318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrical stimulation of the human common peroneal nerve elicits lasting facilitation of cortical motor-evoked potentials.
    Knash ME; Kido A; Gorassini M; Chan KM; Stein RB
    Exp Brain Res; 2003 Dec; 153(3):366-77. PubMed ID: 14610631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects on peroneal motoneurons of cutaneous afferents activated by mechanical or electrical stimulations.
    Perrier JF; Lamotte D'Incamps B; Kouchtir-Devanne N; Jami L; Zytnicki D
    J Neurophysiol; 2000 Jun; 83(6):3209-16. PubMed ID: 10848541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of hip joint angle changes on intersegmental spinal coupling in human spinal cord injury.
    Knikou M
    Exp Brain Res; 2005 Dec; 167(3):381-93. PubMed ID: 16059682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single low-threshold afferents innervating the skin of the human foot modulate ongoing muscle activity in the upper limbs.
    Bent LR; Lowrey CR
    J Neurophysiol; 2013 Mar; 109(6):1614-25. PubMed ID: 23274312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-latency, inhibitory spinal pathway to ankle flexors activated by homonymous group 1 afferents.
    Zewdie ET; Roy FD; Okuma Y; Yang JF; Gorassini MA
    J Neurophysiol; 2014 Jun; 111(12):2544-53. PubMed ID: 24671544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nerve cuff recordings of muscle afferent activity from tibial and peroneal nerves in rabbit during passive ankle motion.
    Riso RR; Mosallaie FK; Jensen W; Sinkjaer T
    IEEE Trans Rehabil Eng; 2000 Jun; 8(2):244-58. PubMed ID: 10896197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for cutaneous and corticospinal modulation of presynaptic inhibition of Ia afferents from the human lower limb.
    Iles JF
    J Physiol; 1996 Feb; 491 ( Pt 1)(Pt 1):197-207. PubMed ID: 9011611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Patterns of primary afferent depolarization of segmental and ascending intraspinal collaterals of single joint afferents in the cat.
    Rudomin P; LomelĂ­ J
    Exp Brain Res; 2007 Jan; 176(1):119-31. PubMed ID: 16896982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of presynaptic inhibition and disynaptic reciprocal Ia inhibition during voluntary movement in spasticity.
    Morita H; Crone C; Christenhuis D; Petersen NT; Nielsen JB
    Brain; 2001 Apr; 124(Pt 4):826-37. PubMed ID: 11287381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plantarflexion force is amplified with sensory stimulation during ramping submaximal isometric contractions.
    Pearcey GEP; Sun Y; Zehr EP
    J Neurophysiol; 2020 Apr; 123(4):1427-1438. PubMed ID: 32159422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Short-term effects of functional electrical stimulation on motor-evoked potentials in ankle flexor and extensor muscles.
    Kido Thompson A; Stein RB
    Exp Brain Res; 2004 Dec; 159(4):491-500. PubMed ID: 15243732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cooperation of muscle and cutaneous afferents in the feedback of contraction to peroneal motoneurons.
    Perrier JF; Lamotte D'Incamps B; Kouchtir-Devanne N; Jami L; Zytnicki D
    J Neurophysiol; 2000 Jun; 83(6):3201-8. PubMed ID: 10848540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facilitation of the soleus stretch reflex induced by electrical excitation of plantar cutaneous afferents located around the heel.
    Sayenko DG; Vette AH; Kamibayashi K; Nakajima T; Akai M; Nakazawa K
    Neurosci Lett; 2007 Mar; 415(3):294-8. PubMed ID: 17276004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immobilization induces changes in presynaptic control of group Ia afferents in healthy humans.
    Lundbye-Jensen J; Nielsen JB
    J Physiol; 2008 Sep; 586(17):4121-35. PubMed ID: 18599534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for strong synaptic coupling between single tactile afferents from the sole of the foot and motoneurons supplying leg muscles.
    Fallon JB; Bent LR; McNulty PA; Macefield VG
    J Neurophysiol; 2005 Dec; 94(6):3795-804. PubMed ID: 16079197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Repeated and patterned stimulation of cutaneous reflex pathways amplifies spinal cord excitability.
    Pearcey GEP; Zehr EP
    J Neurophysiol; 2020 Aug; 124(2):342-351. PubMed ID: 32579412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.