BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 23703324)

  • 1. Identification of a gene involved in plasmid structural instability in Corynebacterium glutamicum.
    Kitade Y; Okino S; Gunji W; Hiraga K; Suda M; Suzuki N; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2013 Sep; 97(18):8219-26. PubMed ID: 23703324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deletion of cgR_1596 and cgR_2070, encoding NlpC/P60 proteins, causes a defect in cell separation in Corynebacterium glutamicum R.
    Tsuge Y; Ogino H; Teramoto H; Inui M; Yukawa H
    J Bacteriol; 2008 Dec; 190(24):8204-14. PubMed ID: 18931118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving putrescine production by Corynebacterium glutamicum by fine-tuning ornithine transcarbamoylase activity using a plasmid addiction system.
    Schneider J; Eberhardt D; Wendisch VF
    Appl Microbiol Biotechnol; 2012 Jul; 95(1):169-78. PubMed ID: 22370950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High copy number mutants derived from Corynebacterium glutamicum cryptic plasmid pAM330 and copy number control.
    Hashiro S; Mitsuhashi M; Yasueda H
    J Biosci Bioeng; 2019 May; 127(5):529-538. PubMed ID: 30420330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering of 1,2-propanediol pathways in Corynebacterium glutamicum.
    Niimi S; Suzuki N; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2011 Jun; 90(5):1721-9. PubMed ID: 21424269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global gene expression during stringent response in Corynebacterium glutamicum in presence and absence of the rel gene encoding (p)ppGpp synthase.
    Brockmann-Gretza O; Kalinowski J
    BMC Genomics; 2006 Sep; 7():230. PubMed ID: 16961923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of PHB accumulation on L-glutamate production by recombinant Corynebacterium glutamicum.
    Liu Q; Ouyang SP; Kim J; Chen GQ
    J Biotechnol; 2007 Nov; 132(3):273-9. PubMed ID: 17555841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of shikimate dehydrogenase homologues of Corynebacterium glutamicum.
    Kubota T; Tanaka Y; Hiraga K; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2013 Sep; 97(18):8139-49. PubMed ID: 23306642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction and application of an efficient multiple-gene-deletion system in Corynebacterium glutamicum.
    Hu J; Tan Y; Li Y; Hu X; Xu D; Wang X
    Plasmid; 2013 Nov; 70(3):303-13. PubMed ID: 23856168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and application of a different glucose uptake system that functions as an alternative to the phosphotransferase system in Corynebacterium glutamicum.
    Ikeda M; Mizuno Y; Awane S; Hayashi M; Mitsuhashi S; Takeno S
    Appl Microbiol Biotechnol; 2011 May; 90(4):1443-51. PubMed ID: 21452034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of genes involved in arsenic resistance in Corynebacterium glutamicum ATCC 13032.
    Ordóñez E; Letek M; Valbuena N; Gil JA; Mateos LM
    Appl Environ Microbiol; 2005 Oct; 71(10):6206-15. PubMed ID: 16204540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a high-copy-number plasmid via adaptive laboratory evolution of Corynebacterium glutamicum.
    Choi JW; Yim SS; Jeong KJ
    Appl Microbiol Biotechnol; 2018 Jan; 102(2):873-883. PubMed ID: 29177939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A third glucose uptake bypass in Corynebacterium glutamicum ATCC 31833.
    Ikeda M; Noguchi N; Ohshita M; Senoo A; Mitsuhashi S; Takeno S
    Appl Microbiol Biotechnol; 2015 Mar; 99(6):2741-50. PubMed ID: 25549619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a genetically engineered Escherichia coli strain for plasmid transformation in Corynebacterium glutamicum.
    Li H; Zhang L; Guo W; Xu D
    J Microbiol Methods; 2016 Dec; 131():156-160. PubMed ID: 27793586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced production of recombinant proteins with Corynebacterium glutamicum by deletion of insertion sequences (IS elements).
    Choi JW; Yim SS; Kim MJ; Jeong KJ
    Microb Cell Fact; 2015 Dec; 14():207. PubMed ID: 26715464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The DtxR protein acting as dual transcriptional regulator directs a global regulatory network involved in iron metabolism of Corynebacterium glutamicum.
    Brune I; Werner H; Hüser AT; Kalinowski J; Pühler A; Tauch A
    BMC Genomics; 2006 Feb; 7():21. PubMed ID: 16469103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alternative thymidylate synthase, ThyX, involved in Corynebacterium glutamicum ATCC 13032 survival during stationary growth phase.
    Park M; Cho S; Lee H; Sibley CH; Rhie H
    FEMS Microbiol Lett; 2010 Jun; 307(2):128-34. PubMed ID: 20636973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The glycosylated cell surface protein Rpf2, containing a resuscitation-promoting factor motif, is involved in intercellular communication of Corynebacterium glutamicum.
    Hartmann M; Barsch A; Niehaus K; Pühler A; Tauch A; Kalinowski J
    Arch Microbiol; 2004 Oct; 182(4):299-312. PubMed ID: 15480574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glucosamine as carbon source for amino acid-producing Corynebacterium glutamicum.
    Uhde A; Youn JW; Maeda T; Clermont L; Matano C; Krämer R; Wendisch VF; Seibold GM; Marin K
    Appl Microbiol Biotechnol; 2013 Feb; 97(4):1679-87. PubMed ID: 22854894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feedback-resistant acetohydroxy acid synthase increases valine production in Corynebacterium glutamicum.
    Elisáková V; Pátek M; Holátko J; Nesvera J; Leyval D; Goergen JL; Delaunay S
    Appl Environ Microbiol; 2005 Jan; 71(1):207-13. PubMed ID: 15640189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.