These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 23703537)

  • 1. Spectral challenges of individual wavelength-scale particles: strong phonons and their distorted lineshapes.
    Ravi A; Malone MA; Luthra A; Lioi D; Coe JV
    Phys Chem Chem Phys; 2013 Jul; 15(25):10307-15. PubMed ID: 23703537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Infrared spectral model for subwavelength particles of mixed composition based on the spectra of individual particles with calibration data for airborne dust.
    Lioi DB; Cilwa KE; McCormack M; Malone MA; Coe JV
    J Phys Chem A; 2013 Nov; 117(44):11297-307. PubMed ID: 24102475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dust Library of Plasmonically Enhanced Infrared Spectra of Individual Respirable Particles.
    Luthra A; Ravi A; Li S; Nystrom SV; Thompson Z; Coe JV
    Appl Spectrosc; 2016 Sep; 70(9):1546-54. PubMed ID: 27440136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From plasmon spectra of metallic to vibron spectra of dielectric nanoparticles.
    Preston TC; Signorell R
    Acc Chem Res; 2012 Sep; 45(9):1501-10. PubMed ID: 22738352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of particle aspect ratio on the midinfrared extinction spectra of wavelength-sized ice crystals.
    Wagner R; Benz S; Möhler O; Saathoff H; Schnaiter M; Leisner T
    J Phys Chem A; 2007 Dec; 111(50):13003-22. PubMed ID: 18004822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Design of inhalable particulate matters measurement based on the Mie scattering extinction].
    Zhang P; Liu LL; Li CL; Qiu XB; Wei JL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Aug; 34(8):2298-302. PubMed ID: 25474981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase, shape, and architecture of SF6 and SF6/CO2 aerosol particles: infrared spectra and modeling of vibrational excitons.
    Firanescu G; Luckhaus D; Signorell R
    J Chem Phys; 2008 May; 128(18):184301. PubMed ID: 18532806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical Sizing of Ultrafine Metallic Particles: Retrieval of Particle Size Distribution from Spectral Extinction Measurements.
    Oshchepkov SL; Sinyuk AF
    J Colloid Interface Sci; 1998 Dec; 208(1):137-146. PubMed ID: 9820757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectral reflectance and emittance of particulate materials. 1: theory.
    Emslie AG; Aronson JR
    Appl Opt; 1973 Nov; 12(11):2563-72. PubMed ID: 20125831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phononic crystals of spherical particles: a tight binding approach.
    Mattarelli M; Secchi M; Montagna M
    J Chem Phys; 2013 Nov; 139(17):174710. PubMed ID: 24206325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectroscopic signature of the superparamagnetic transition and surface spin disorder in CoFe2O4 nanoparticles.
    Sun QC; Birkel CS; Cao J; Tremel W; Musfeldt JL
    ACS Nano; 2012 Jun; 6(6):4876-83. PubMed ID: 22540958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Field evaluation of nanofilm detectors for measuring acidic particles in indoor and outdoor air.
    Cohen BS; Heikkinen MS; Hazi Y; Gao H; Peters P; Lippmann M
    Res Rep Health Eff Inst; 2004 Sep; (121):1-35; discussion 37-46. PubMed ID: 15553489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of the Christiansen effect in the mid-infrared region for airborne particles.
    Pollard MJ; Griffiths PR; Nishikida K
    Appl Spectrosc; 2007 Aug; 61(8):860-6. PubMed ID: 17716405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicted light scattering from particles observed in human age-related nuclear cataracts using mie scattering theory.
    Costello MJ; Johnsen S; Gilliland KO; Freel CD; Fowler WC
    Invest Ophthalmol Vis Sci; 2007 Jan; 48(1):303-12. PubMed ID: 17197547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variation of single particle mid-infrared emission spectrum with particle size.
    Hunt GR; Logan LM
    Appl Opt; 1972 Jan; 11(1):142-7. PubMed ID: 20111469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of particle shape and structure on the results of single-particle light-scattering size analysis.
    Umhauer H; Bottlinger M
    Appl Opt; 1991 Nov; 30(33):4980-6. PubMed ID: 20717305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting the influence of shape, size, and internal structure of CO aerosol particles on their infrared spectra.
    Firanescu G; Signorell R
    J Phys Chem B; 2009 May; 113(18):6366-77. PubMed ID: 19358536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visualizing the effect of gold nanocages on absorption, imaging, and lower critical solution temperature phase transition of individual poly(NiPAM)-based hydrogel particles by near infrared multispectral imaging microscopy.
    Mejac I; Tran CD
    Anal Chem; 2011 May; 83(9):3520-7. PubMed ID: 21476588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light-scattering features of turbidity-causing particles in interconnected reservoir basins and a connecting stream.
    Peng F; Effler SW; Pierson DC; Smith DG
    Water Res; 2009 May; 43(8):2280-92. PubMed ID: 19278710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Infrared spectroscopic properties of sodium bromide aerosols.
    Miñambres L; Sánchez MN; Castaño F; Basterretxea FJ
    J Phys Chem A; 2008 Jul; 112(29):6601-8. PubMed ID: 18588272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.