BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 23703585)

  • 1. Thiol-addition reactions and their applications in thiol recognition.
    Yin C; Huo F; Zhang J; Martínez-Máñez R; Yang Y; Lv H; Li S
    Chem Soc Rev; 2013 Jul; 42(14):6032-59. PubMed ID: 23703585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent advances in thiol and sulfide reactive probes.
    Wang K; Peng H; Wang B
    J Cell Biochem; 2014 Jun; 115(6):1007-22. PubMed ID: 24415273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coumarin-malonitrile conjugate as a fluorescence turn-on probe for biothiols and its cellular expression.
    Kwon H; Lee K; Kim HJ
    Chem Commun (Camb); 2011 Feb; 47(6):1773-5. PubMed ID: 21127785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simple excited-state intramolecular proton transfer probe based on a new strategy of thiol-azide reaction for the selective sensing of cysteine and glutathione.
    Zhang D; Yang Z; Li H; Pei Z; Sun S; Xu Y
    Chem Commun (Camb); 2016 Jan; 52(4):749-52. PubMed ID: 26565523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly fluorescent and specific molecular probing of (homo)cysteine or superoxide: biothiol detection confirmed in living neuronal cells.
    Murale DP; Kim H; Choi WS; Churchill DG
    Org Lett; 2013 Jul; 15(14):3630-3. PubMed ID: 23808645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescent and colorimetric probes for detection of thiols.
    Chen X; Zhou Y; Peng X; Yoon J
    Chem Soc Rev; 2010 Jun; 39(6):2120-35. PubMed ID: 20502801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent progress in luminescent and colorimetric chemosensors for detection of thiols.
    Jung HS; Chen X; Kim JS; Yoon J
    Chem Soc Rev; 2013 Jul; 42(14):6019-31. PubMed ID: 23689799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biscysteine-Bearing Peptide Probes To Reveal Extracellular Thiol-Disulfide Exchange Reactions Promoting Cellular Uptake.
    Li T; Gao W; Liang J; Zha M; Chen Y; Zhao Y; Wu C
    Anal Chem; 2017 Aug; 89(16):8501-8508. PubMed ID: 28714307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thiol-ene click reaction-induced fluorescence enhancement by altering the radiative rate for assaying butyrylcholinesterase activity.
    Chen G; Feng H; Xi W; Xu J; Pan S; Qian Z
    Analyst; 2019 Jan; 144(2):559-566. PubMed ID: 30417195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidation and generation of hydrogen peroxide by thiol compounds in commonly used cell culture media.
    Hua Long L; Halliwell B
    Biochem Biophys Res Commun; 2001 Sep; 286(5):991-4. PubMed ID: 11527398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for the formation of Michael adducts from reactions of (E,E)-muconaldehyde with glutathione and other thiols.
    Henderson AP; Bleasdale C; Delaney K; Lindstrom AB; Rappaport SM; Waidyanatha S; Watson WP; Golding BT
    Bioorg Chem; 2005 Oct; 33(5):363-73. PubMed ID: 16005934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescent Probes for Live Cell Thiol Detection.
    Wang S; Huang Y; Guan X
    Molecules; 2021 Jun; 26(12):. PubMed ID: 34208153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics and mechanism of the reaction between 3-deoxyhexosulose and thiols.
    Edwards AS; Wedzicha BL
    Food Addit Contam; 1992; 9(5):461-9. PubMed ID: 1298650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Colorimetric and ratiometric fluorescent chemosensor based on diketopyrrolopyrrole for selective detection of thiols: an experimental and theoretical study.
    Deng L; Wu W; Guo H; Zhao J; Ji S; Zhang X; Yuan X; Zhang C
    J Org Chem; 2011 Nov; 76(22):9294-304. PubMed ID: 22007952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biological chemistry of thiols in the vasculature and in vascular-related disease.
    Stamler JS; Slivka A
    Nutr Rev; 1996 Jan; 54(1 Pt 1):1-30. PubMed ID: 8919695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein-thiol substitution or protein dethiolation by thiol/disulfide exchange reactions: the albumin model.
    Summa D; Spiga O; Bernini A; Venditti V; Priora R; Frosali S; Margaritis A; Di Giuseppe D; Niccolai N; Di Simplicio P
    Proteins; 2007 Nov; 69(2):369-78. PubMed ID: 17607746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ionization-reactivity relationships for cysteine thiols in polypeptides.
    Bulaj G; Kortemme T; Goldenberg DP
    Biochemistry; 1998 Jun; 37(25):8965-72. PubMed ID: 9636038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of screen-printed electrodes in a proof of concept electrochemical estimation of homocysteine and glutathione in the presence of cysteine using catechol.
    Lee PT; Lowinsohn D; Compton RG
    Sensors (Basel); 2014 Jun; 14(6):10395-411. PubMed ID: 24926695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A turn-on fluorescent sensor for the discrimination of cystein from homocystein and glutathione.
    Niu LY; Guan YS; Chen YZ; Wu LZ; Tung CH; Yang QZ
    Chem Commun (Camb); 2013 Feb; 49(13):1294-6. PubMed ID: 23295243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Squaraines as fluoro-chromogenic probes for thiol-containing compounds and their application to the detection of biorelevant thiols.
    Ros-Lis JV; García B; Jiménez D; Martínez-Máñez R; Sancenón F; Soto J; Gonzalvo F; Valldecabres MC
    J Am Chem Soc; 2004 Apr; 126(13):4064-5. PubMed ID: 15053569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.