These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 23703747)

  • 1. Chemocatalytic conversion of ethanol into butadiene and other bulk chemicals.
    Angelici C; Weckhuysen BM; Bruijnincx PC
    ChemSusChem; 2013 Sep; 6(9):1595-614. PubMed ID: 23703747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Review of old chemistry and new catalytic advances in the on-purpose synthesis of butadiene.
    Makshina EV; Dusselier M; Janssens W; Degrève J; Jacobs PA; Sels BF
    Chem Soc Rev; 2014 Nov; 43(22):7917-53. PubMed ID: 24993100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vitamin B1-catalyzed acetoin formation from acetaldehyde: a key step for upgrading bioethanol to bulk C₄ chemicals.
    Lu T; Li X; Gu L; Zhang Y
    ChemSusChem; 2014 Sep; 7(9):2423-6. PubMed ID: 25044300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ternary Ag/MgO-SiO2 catalysts for the conversion of ethanol into butadiene.
    Janssens W; Makshina EV; Vanelderen P; De Clippel F; Houthoofd K; Kerkhofs S; Martens JA; Jacobs PA; Sels BF
    ChemSusChem; 2015 Mar; 8(6):994-1008. PubMed ID: 25410420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Top chemical opportunities from carbohydrate biomass: a chemist's view of the Biorefinery.
    Dusselier M; Mascal M; Sels BF
    Top Curr Chem; 2014; 353():1-40. PubMed ID: 24842622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fueling industrial biotechnology growth with bioethanol.
    Otero JM; Panagiotou G; Olsson L
    Adv Biochem Eng Biotechnol; 2007; 108():1-40. PubMed ID: 17684710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of preparation method and CuO promotion in the conversion of ethanol into 1,3-butadiene over SiO₂-MgO catalysts.
    Angelici C; Velthoen ME; Weckhuysen BM; Bruijnincx PC
    ChemSusChem; 2014 Sep; 7(9):2505-15. PubMed ID: 25045112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalysis for biomass and CO2 use through solar energy: opening new scenarios for a sustainable and low-carbon chemical production.
    Lanzafame P; Centi G; Perathoner S
    Chem Soc Rev; 2014 Nov; 43(22):7562-80. PubMed ID: 24577063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biocommodity Engineering.
    Lynd LR; Wyman CE; Gerngross TU
    Biotechnol Prog; 1999 Oct; 15(5):777-793. PubMed ID: 10514248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Advances in Catalysts for the Conversion of Ethanol to Butadiene.
    Bin Samsudin I; Zhang H; Jaenicke S; Chuah GK
    Chem Asian J; 2020 Dec; 15(24):4199-4214. PubMed ID: 33073524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Propylene from renewable resources: catalytic conversion of glycerol into propylene.
    Yu L; Yuan J; Zhang Q; Liu YM; He HY; Fan KN; Cao Y
    ChemSusChem; 2014 Mar; 7(3):743-7. PubMed ID: 24578188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic oxidation of biorefinery lignin to value-added chemicals to support sustainable biofuel production.
    Ma R; Xu Y; Zhang X
    ChemSusChem; 2015 Jan; 8(1):24-51. PubMed ID: 25272962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential of bioethanol as a chemical building block for biorefineries: preliminary sustainability assessment of 12 bioethanol-based products.
    Posada JA; Patel AD; Roes A; Blok K; Faaij AP; Patel MK
    Bioresour Technol; 2013 May; 135():490-9. PubMed ID: 23069604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated techno-economic and environmental analysis of butadiene production from biomass.
    Farzad S; Mandegari MA; Görgens JF
    Bioresour Technol; 2017 Sep; 239():37-48. PubMed ID: 28500887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent advances in membrane technologies for biorefining and bioenergy production.
    He Y; Bagley DM; Leung KT; Liss SN; Liao BQ
    Biotechnol Adv; 2012; 30(4):817-58. PubMed ID: 22306168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From Sugars to Wheels: The Conversion of Ethanol to 1,3-Butadiene over Metal-Promoted Magnesia-Silicate Catalysts.
    Shylesh S; Gokhale AA; Scown CD; Kim D; Ho CR; Bell AT
    ChemSusChem; 2016 Jun; 9(12):1462-72. PubMed ID: 27198471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemocatalytic Conversion of Cellulosic Biomass to Methyl Glycolate, Ethylene Glycol, and Ethanol.
    Xu G; Wang A; Pang J; Zhao X; Xu J; Lei N; Wang J; Zheng M; Yin J; Zhang T
    ChemSusChem; 2017 Apr; 10(7):1390-1394. PubMed ID: 28266799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioethanol from lignocellulosics: Status and perspectives in Canada.
    Mabee WE; Saddler JN
    Bioresour Technol; 2010 Jul; 101(13):4806-13. PubMed ID: 20006494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of nanocatalysts for green hydrogen production from bioethanol.
    Bion N; Duprez D; Epron F
    ChemSusChem; 2012 Jan; 5(1):76-84. PubMed ID: 22190382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scientific challenges of bioethanol production in Brazil.
    Amorim HV; Lopes ML; de Castro Oliveira JV; Buckeridge MS; Goldman GH
    Appl Microbiol Biotechnol; 2011 Sep; 91(5):1267-75. PubMed ID: 21735264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.