BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 23703833)

  • 1. A new insight into the impact of different proteases on SILAC quantitative proteome of the mouse liver.
    Ma J; Li W; Lv Y; Chang C; Wu S; Song L; Ding C; Wei H; He F; Jiang Y; Zhu Y
    Proteomics; 2013 Aug; 13(15):2238-42. PubMed ID: 23703833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combination of online enzyme digestion with stable isotope labeling for high-throughput quantitative proteome analysis.
    Wang F; Wei X; Zhou H; Liu J; Figeys D; Zou H
    Proteomics; 2012 Nov; 12(21):3129-37. PubMed ID: 22945397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lysine Propionylation To Boost Sequence Coverage and Enable a "Silent SILAC" Strategy for Relative Protein Quantification.
    Schräder CU; Moore S; Goodarzi AA; Schriemer DC
    Anal Chem; 2018 Aug; 90(15):9077-9084. PubMed ID: 29975514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trypsin immobilization on hairy polymer chains hybrid magnetic nanoparticles for ultra fast, highly efficient proteome digestion, facile 18O labeling and absolute protein quantification.
    Qin W; Song Z; Fan C; Zhang W; Cai Y; Zhang Y; Qian X
    Anal Chem; 2012 Apr; 84(7):3138-44. PubMed ID: 22413971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applying multiple proteases to direct digestion of hundred-scale cell samples for proteome analysis.
    Chen Q; Yan G; Zhang X
    Rapid Commun Mass Spectrom; 2015 Aug; 29(15):1389-94. PubMed ID: 26147478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative analysis of mTRAQ-labeled proteome using full MS scans.
    Kang UB; Yeom J; Kim H; Lee C
    J Proteome Res; 2010 Jul; 9(7):3750-8. PubMed ID: 20465265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell-based identification of natural substrates and cleavage sites for extracellular proteases by SILAC proteomics.
    Gioia M; Foster LJ; Overall CM
    Methods Mol Biol; 2009; 539():131-53. PubMed ID: 19377966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Why less is more when generating tryptic peptides in bottom-up proteomics.
    Hildonen S; Halvorsen TG; Reubsaet L
    Proteomics; 2014 Sep; 14(17-18):2031-41. PubMed ID: 25044798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new sample preparation method for the absolute quantitation of a target proteome using (18)O labeling combined with multiple reaction monitoring mass spectrometry.
    Li J; Zhou L; Wang H; Yan H; Li N; Zhai R; Jiao F; Hao F; Jin Z; Tian F; Peng B; Zhang Y; Qian X
    Analyst; 2015 Feb; 140(4):1281-90. PubMed ID: 25568899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An accurate proteomic quantification method: fluorescence labeling absolute quantification (FLAQ) using multidimensional liquid chromatography and tandem mass spectrometry.
    Liu J; Liu Y; Gao M; Zhang X
    Proteomics; 2012 Aug; 12(14):2258-70. PubMed ID: 22887945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mass defect-based pseudo-isobaric dimethyl labeling for proteome quantification.
    Zhou Y; Shan Y; Wu Q; Zhang S; Zhang L; Zhang Y
    Anal Chem; 2013 Nov; 85(22):10658-63. PubMed ID: 24180428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-throughput analysis of rat liver plasma membrane proteome by a nonelectrophoretic in-gel tryptic digestion coupled with mass spectrometry identification.
    Cao R; He Q; Zhou J; He Q; Liu Z; Wang X; Chen P; Xie J; Liang S
    J Proteome Res; 2008 Feb; 7(2):535-45. PubMed ID: 18166008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deglycosylation systematically improves N-glycoprotein identification in liquid chromatography-tandem mass spectrometry proteomics for analysis of cell wall stress responses in Saccharomyces cerevisiae lacking Alg3p.
    Bailey UM; Schulz BL
    J Chromatogr B Analyt Technol Biomed Life Sci; 2013 Apr; 923-924():16-21. PubMed ID: 23454304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relative quantitation of proteins in expressed prostatic secretion with a stable isotope labeled secretome standard.
    Zhao T; Zeng X; Bateman NW; Sun M; Teng PN; Bigbee WL; Dhir R; Nelson JB; Conrads TP; Hood BL
    J Proteome Res; 2012 Feb; 11(2):1089-99. PubMed ID: 22077639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sample multiplexing with cysteine-selective approaches: cysDML and cPILOT.
    Gu L; Evans AR; Robinson RA
    J Am Soc Mass Spectrom; 2015 Apr; 26(4):615-30. PubMed ID: 25588721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multitagging proteomic strategy to estimate protein turnover rates in dynamic systems.
    Jayapal KP; Sui S; Philp RJ; Kok YJ; Yap MG; Griffin TJ; Hu WS
    J Proteome Res; 2010 May; 9(5):2087-97. PubMed ID: 20184388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the possible proteomic application of trypsin from Streptomyces griseus.
    Stosová T; Sebela M; Rehulka P; Sedo O; Havlis J; Zdráhal Z
    Anal Biochem; 2008 May; 376(1):94-102. PubMed ID: 18261455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteome-wide quantitation by SILAC.
    Rigbolt KT; Blagoev B
    Methods Mol Biol; 2010; 658():187-204. PubMed ID: 20839105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient Tandem LysC/Trypsin Digestion in Detergent Conditions.
    Hakobyan A; Schneider MB; Liesack W; Glatter T
    Proteomics; 2019 Oct; 19(20):e1900136. PubMed ID: 31536157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrating Lys-N proteolysis and N-terminal guanidination for improved fragmentation and relative quantification of singly-charged ions.
    Carabetta VJ; Li T; Shakya A; Greco TM; Cristea IM
    J Am Soc Mass Spectrom; 2010 Jun; 21(6):1050-60. PubMed ID: 20207164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.