BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 23703865)

  • 1. A reductionist mechanistic model for bioconcentration of neutral and weakly polar organic compounds in fish.
    Kuo DT; Di Toro DM
    Environ Toxicol Chem; 2013 Sep; 32(9):2089-99. PubMed ID: 23703865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Reduced Model for Bioconcentration and Biotransformation of Neutral Organic Compounds in Midge.
    Kuo DTF; Chen CC
    Environ Toxicol Chem; 2021 Jan; 40(1):57-71. PubMed ID: 33044762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioconcentration model for non-ionic, polar, and ionizable organic compounds in amphipod.
    Chen CC; Kuo DTF
    Environ Toxicol Chem; 2018 May; 37(5):1378-1386. PubMed ID: 29315781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biotransformation model of neutral and weakly polar organic compounds in fish incorporating internal partitioning.
    Kuo DT; Di Toro DM
    Environ Toxicol Chem; 2013 Aug; 32(8):1873-81. PubMed ID: 23625748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and evaluation of a mechanistic bioconcentration model for ionogenic organic chemicals in fish.
    Armitage JM; Arnot JA; Wania F; Mackay D
    Environ Toxicol Chem; 2013 Jan; 32(1):115-28. PubMed ID: 23023933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of the bioaccumulation factor to screen chemicals for bioaccumulation potential.
    Costanza J; Lynch DG; Boethling RS; Arnot JA
    Environ Toxicol Chem; 2012 Oct; 31(10):2261-8. PubMed ID: 22821825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Models Used to Predict Chemical Bioaccumulation in Fish from in Vitro Biotransformation Rates Require Accurate Estimates of Blood-Water Partitioning and Chemical Volume of Distribution.
    Saunders LJ; Nichols JW
    Environ Toxicol Chem; 2023 Jan; 42(1):33-45. PubMed ID: 36282023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic biotransformation half-lives in fish: QSAR modeling and consensus analysis.
    Papa E; van der Wal L; Arnot JA; Gramatica P
    Sci Total Environ; 2014 Feb; 470-471():1040-6. PubMed ID: 24239825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Can poly-parameter linear-free energy relationships (pp-LFERs) improve modelling bioaccumulation in fish?
    Zhao S; Jones KC; Sweetman AJ
    Chemosphere; 2018 Jan; 191():235-244. PubMed ID: 29035795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Vivo Biotransformation Rates of Organic Chemicals in Fish: Relationship with Bioconcentration and Biomagnification Factors.
    Lo JC; Letinski DJ; Parkerton TF; Campbell DA; Gobas FA
    Environ Sci Technol; 2016 Dec; 50(24):13299-13308. PubMed ID: 27993034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioconcentration, bioaccumulation, biomagnification and trophic magnification: a modelling perspective.
    Mackay D; Celsie AKD; Powell DE; Parnis JM
    Environ Sci Process Impacts; 2018 Jan; 20(1):72-85. PubMed ID: 29260171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and evaluation of a database of dietary bioaccumulation test data for organic chemicals in fish.
    Arnot JA; Quinn CL
    Environ Sci Technol; 2015 Apr; 49(8):4783-96. PubMed ID: 25821900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of bioconcentration factors of nonionic organic compounds in fish by molecular connectivity indices and polarity correction factors.
    Lu X; Tao S; Hu H; Dawson RW
    Chemosphere; 2000 Nov; 41(10):1675-88. PubMed ID: 11057696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved prediction of fish bioconcentration factor of hydrophobic chemicals.
    Dearden JC; Shinnawei NM
    SAR QSAR Environ Res; 2004; 15(5-6):449-55. PubMed ID: 15669701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using conditional inference trees and random forests to predict the bioaccumulation potential of organic chemicals.
    Strempel S; Nendza M; Scheringer M; Hungerbühler K
    Environ Toxicol Chem; 2013 Apr; 32(5):1187-95. PubMed ID: 23382013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation and comparison of benchmark QSAR models to predict a relevant REACH endpoint: The bioconcentration factor (BCF).
    Gissi A; Lombardo A; Roncaglioni A; Gadaleta D; Mangiatordi GF; Nicolotti O; Benfenati E
    Environ Res; 2015 Feb; 137():398-409. PubMed ID: 25616163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. QSAR models for bioconcentration: is the increase in the complexity justified by more accurate predictions?
    Grisoni F; Consonni V; Villa S; Vighi M; Todeschini R
    Chemosphere; 2015 May; 127():171-9. PubMed ID: 25703779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation on the relationship between bioconcentration factor and distribution coefficient based on class-based compounds: The factors that affect bioconcentration.
    Wang Y; Wen Y; Li JJ; He J; Qin WC; Su LM; Zhao YH
    Environ Toxicol Pharmacol; 2014 Sep; 38(2):388-96. PubMed ID: 25124515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methods for estimating the bioconcentration factor of ionizable organic chemicals.
    Fu W; Franco A; Trapp S
    Environ Toxicol Chem; 2009 Jul; 28(7):1372-9. PubMed ID: 19245273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimating the Bioconcentration Factors of Hydrophobic Organic Compounds from Biotransformation Rates Using Rainbow Trout Hepatocytes.
    Trowell JJ; Gobas FAPC; Moore MM; Kennedy CJ
    Arch Environ Contam Toxicol; 2018 Aug; 75(2):295-305. PubMed ID: 29550936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.