These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

417 related articles for article (PubMed ID: 23704077)

  • 21. Directed Evolution of Artificial Metalloenzymes: A Universal Means to Tune the Selectivity of Transition Metal Catalysts?
    Reetz MT
    Acc Chem Res; 2019 Feb; 52(2):336-344. PubMed ID: 30689339
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Beyond the Second Coordination Sphere: Engineering Dirhodium Artificial Metalloenzymes To Enable Protein Control of Transition Metal Catalysis.
    Lewis JC
    Acc Chem Res; 2019 Mar; 52(3):576-584. PubMed ID: 30830755
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Expansion of Redox Chemistry in Designer Metalloenzymes.
    Yu Y; Liu X; Wang J
    Acc Chem Res; 2019 Mar; 52(3):557-565. PubMed ID: 30816694
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Towards the Evolution of Artificial Metalloenzymes-A Protein Engineer's Perspective.
    Markel U; Sauer DF; Schiffels J; Okuda J; Schwaneberg U
    Angew Chem Int Ed Engl; 2019 Mar; 58(14):4454-4464. PubMed ID: 30431222
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Supramolecular Assembly of Artificial Metalloenzymes Based on the Dimeric Protein LmrR as Promiscuous Scaffold.
    Bos J; Browne WR; Driessen AJ; Roelfes G
    J Am Chem Soc; 2015 Aug; 137(31):9796-9. PubMed ID: 26214343
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ring-Closing and Cross-Metathesis with Artificial Metalloenzymes Created by Covalent Active Site-Directed Hybridization of a Lipase.
    Basauri-Molina M; Verhoeven DG; van Schaik AJ; Kleijn H; Klein Gebbink RJ
    Chemistry; 2015 Oct; 21(44):15676-85. PubMed ID: 26346291
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Coordinated design of cofactor and active site structures in development of new protein catalysts.
    Ueno T; Koshiyama T; Ohashi M; Kondo K; Kono M; Suzuki A; Yamane T; Watanabe Y
    J Am Chem Soc; 2005 May; 127(18):6556-62. PubMed ID: 15869276
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Periplasmic Screening for Artificial Metalloenzymes.
    Jeschek M; Panke S; Ward TR
    Methods Enzymol; 2016; 580():539-56. PubMed ID: 27586348
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Selective Sulfide Oxidation Catalyzed by Heterogeneous Artificial Metalloenzymes Iron@NikA.
    Lopez S; Marchi-Delapierre C; Cavazza C; Ménage S
    Chemistry; 2020 Dec; 26(70):16633-16638. PubMed ID: 33079395
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metalloprotein mimics - old tools in a new light.
    Happe T; Hemschemeier A
    Trends Biotechnol; 2014 Apr; 32(4):170-6. PubMed ID: 24630475
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design, folding, and activities of metal-assembled coiled coil proteins.
    Doerr AJ; McLendon GL
    Inorg Chem; 2004 Dec; 43(25):7916-25. PubMed ID: 15578825
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metalloprotein and metallo-DNA/RNAzyme design: current approaches, success measures, and future challenges.
    Lu Y
    Inorg Chem; 2006 Dec; 45(25):9930-40. PubMed ID: 17140190
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Abiological catalysis by artificial haem proteins containing noble metals in place of iron.
    Key HM; Dydio P; Clark DS; Hartwig JF
    Nature; 2016 Jun; 534(7608):534-7. PubMed ID: 27296224
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular Modeling for Artificial Metalloenzyme Design and Optimization.
    Alonso-Cotchico L; Rodrı Guez-Guerra J; Lledós A; Maréchal JD
    Acc Chem Res; 2020 Apr; 53(4):896-905. PubMed ID: 32233391
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Artificial metalloenzymes as catalysts in stereoselective Diels-Alder reactions.
    Reetz MT
    Chem Rec; 2012 Aug; 12(4):391-406. PubMed ID: 22711577
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chemogenetic protein engineering: an efficient tool for the optimization of artificial metalloenzymes.
    Pordea A; Ward TR
    Chem Commun (Camb); 2008 Sep; (36):4239-49. PubMed ID: 18802535
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recent achievments in the design and engineering of artificial metalloenzymes.
    Dürrenberger M; Ward TR
    Curr Opin Chem Biol; 2014 Apr; 19():99-106. PubMed ID: 24608081
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Artificial Metalloenzymes: From Selective Chemical Transformations to Biochemical Applications.
    Himiyama T; Okamoto Y
    Molecules; 2020 Jun; 25(13):. PubMed ID: 32629938
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Merging the best of two worlds: artificial metalloenzymes for enantioselective catalysis.
    Ringenberg MR; Ward TR
    Chem Commun (Camb); 2011 Aug; 47(30):8470-6. PubMed ID: 21603692
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Crystal structure based design of functional metal/protein hybrids.
    Ueno T; Yokoi N; Abe S; Watanabe Y
    J Inorg Biochem; 2007 Nov; 101(11-12):1667-75. PubMed ID: 17675160
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.