These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 23704180)
1. Draft Genome Sequence of Botrytis cinerea BcDW1, Inoculum for Noble Rot of Grape Berries. Blanco-Ulate B; Allen G; Powell AL; Cantu D Genome Announc; 2013 May; 1(3):. PubMed ID: 23704180 [TBL] [Abstract][Full Text] [Related]
2. Developmental and Metabolic Plasticity of White-Skinned Grape Berries in Response to Botrytis cinerea during Noble Rot. Blanco-Ulate B; Amrine KC; Collins TS; Rivero RM; Vicente AR; Morales-Cruz A; Doyle CL; Ye Z; Allen G; Heymann H; Ebeler SE; Cantu D Plant Physiol; 2015 Dec; 169(4):2422-43. PubMed ID: 26450706 [TBL] [Abstract][Full Text] [Related]
3. Botrytis cinerea expression profile and metabolism differs between noble and grey rot of grapes. Otto M; Geml J; Hegyi ÁI; Hegyi-Kaló J; Pierneef R; Pogány M; Kun J; Gyenesei A; Váczy KZ Food Microbiol; 2022 Sep; 106():104037. PubMed ID: 35690441 [TBL] [Abstract][Full Text] [Related]
4. Plant and fungus transcriptomic data from grapevine berries undergoing artificially-induced noble rot caused by Lovato A; Zenoni S; Tornielli GB; Colombo T; Vandelle E; Polverari A Data Brief; 2019 Aug; 25():104150. PubMed ID: 31304217 [TBL] [Abstract][Full Text] [Related]
5. The Induction of Noble Rot ( Negri S; Lovato A; Boscaini F; Salvetti E; Torriani S; Commisso M; Danzi R; Ugliano M; Polverari A; Tornielli GB; Guzzo F Front Plant Sci; 2017; 8():1002. PubMed ID: 28680428 [TBL] [Abstract][Full Text] [Related]
6. Destructive and non-destructive early detection of postharvest noble rot (Botrytis cinerea) in wine grapes aimed at producing high-quality wines. Modesti M; Alfieri G; Chieffo C; Mencarelli F; Vannini A; Catalani A; Chilosi G; Bellincontro A J Sci Food Agric; 2024 Mar; 104(4):2314-2325. PubMed ID: 37950679 [TBL] [Abstract][Full Text] [Related]
7. Laccases 2 & 3 as biomarkers of Botrytis cinerea infection in sweet white wines. Ployon S; Attina A; Vialaret J; Walker AS; Hirtz C; Saucier C Food Chem; 2020 Jun; 315():126233. PubMed ID: 32018078 [TBL] [Abstract][Full Text] [Related]
8. Postharvest grape infection of Botrytis cinerea and its interactions with other moulds under withering conditions to produce noble-rotten grapes. Lorenzini M; Azzolini M; Tosi E; Zapparoli G J Appl Microbiol; 2013 Mar; 114(3):762-70. PubMed ID: 23163324 [TBL] [Abstract][Full Text] [Related]
9. Aroma compounds and characteristics of noble-rot wines of Chardonnay grapes artificially botrytized in the vineyard. Wang XJ; Tao YS; Wu Y; An RY; Yue ZY Food Chem; 2017 Jul; 226():41-50. PubMed ID: 28254017 [TBL] [Abstract][Full Text] [Related]
10. Development of a qPCR method for classification of botrytized grape berries originated from Tokaj wine region. Belák Á; Kovács M; Ittzés A; Pomázi A Food Microbiol; 2024 Oct; 123():104582. PubMed ID: 39038888 [TBL] [Abstract][Full Text] [Related]
11. Selection of Botrytis cinerea and Saccharomyces cerevisiae strains for the improvement and valorization of Italian passito style wines. Azzolini M; Tosi E; Faccio S; Lorenzini M; Torriani S; Zapparoli G FEMS Yeast Res; 2013 Sep; 13(6):540-52. PubMed ID: 23710966 [TBL] [Abstract][Full Text] [Related]
12. Metabolomics reveals simultaneous influences of plant defence system and fungal growth in Botrytis cinerea-infected Vitis vinifera cv. Chardonnay berries. Hong YS; Martinez A; Liger-Belair G; Jeandet P; Nuzillard JM; Cilindre C J Exp Bot; 2012 Oct; 63(16):5773-85. PubMed ID: 22945941 [TBL] [Abstract][Full Text] [Related]
13. Filamentous fungi associated with natural infection of noble rot on withered grapes. Lorenzini M; Simonato B; Favati F; Bernardi P; Sbarbati A; Zapparoli G Int J Food Microbiol; 2018 May; 272():83-86. PubMed ID: 29550687 [TBL] [Abstract][Full Text] [Related]
14. Botrytized wines. Magyar I Adv Food Nutr Res; 2011; 63():147-206. PubMed ID: 21867895 [TBL] [Abstract][Full Text] [Related]
15. Metatranscriptomic Analyses Reveal the Functional Role of Hegyi ÁI; Otto M; Geml J; Hegyi-Kaló J; Kun J; Gyenesei A; Pierneef R; Váczy KZ J Fungi (Basel); 2022 Apr; 8(4):. PubMed ID: 35448609 [No Abstract] [Full Text] [Related]
16. Correlating Noble Rot Infection of Garganega Withered Grapes with Key Molecules and Odorants of Botrytized Passito Wine. Simonato B; Lorenzini M; Cipriani M; Finato F; Zapparoli G Foods; 2019 Dec; 8(12):. PubMed ID: 31817273 [TBL] [Abstract][Full Text] [Related]
17. Comparative protein profile analysis of wines made from Botrytis cinerea infected and healthy grapes reveals a novel biomarker for gushing in sparkling wine. Kupfer VM; Vogt EI; Ziegler T; Vogel RF; Niessen L Food Res Int; 2017 Sep; 99(Pt 1):501-509. PubMed ID: 28784511 [TBL] [Abstract][Full Text] [Related]
18. Metabolic influence of Botrytis cinerea infection in champagne base wine. Hong YS; Cilindre C; Liger-Belair G; Jeandet P; Hertkorn N; Schmitt-Kopplin P J Agric Food Chem; 2011 Jul; 59(13):7237-45. PubMed ID: 21604814 [TBL] [Abstract][Full Text] [Related]
19. Identification of potential protein markers of noble rot infected grapes. Lorenzini M; Millioni R; Franchin C; Zapparoli G; Arrigoni G; Simonato B Food Chem; 2015 Jul; 179():170-4. PubMed ID: 25722151 [TBL] [Abstract][Full Text] [Related]
20. Study of amine composition of botrytized grape berries. Kiss J; Korbász M; Sass-Kiss A J Agric Food Chem; 2006 Nov; 54(23):8909-18. PubMed ID: 17090141 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]