BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 23705745)

  • 1. Circular motion of asymmetric self-propelling particles.
    Kümmel F; ten Hagen B; Wittkowski R; Buttinoni I; Eichhorn R; Volpe G; Löwen H; Bechinger C
    Phys Rev Lett; 2013 May; 110(19):198302. PubMed ID: 23705745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Swimming in circles: motion of bacteria near solid boundaries.
    Lauga E; DiLuzio WR; Whitesides GM; Stone HA
    Biophys J; 2006 Jan; 90(2):400-12. PubMed ID: 16239332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fully Steerable Symmetric Thermoplasmonic Microswimmers.
    Fränzl M; Muiños-Landin S; Holubec V; Cichos F
    ACS Nano; 2021 Feb; 15(2):3434-3440. PubMed ID: 33556235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-Gaussian statistics for the motion of self-propelled Janus particles: experiment versus theory.
    Zheng X; Ten Hagen B; Kaiser A; Wu M; Cui H; Silber-Li Z; Löwen H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032304. PubMed ID: 24125265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rectification of swimming bacteria and self-driven particle systems by arrays of asymmetric barriers.
    Wan MB; Olson Reichhardt CJ; Nussinov Z; Reichhardt C
    Phys Rev Lett; 2008 Jul; 101(1):018102. PubMed ID: 18764155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluctuating hydrodynamics and microrheology of a dilute suspension of swimming bacteria.
    Lau AW; Lubensky TC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 1):011917. PubMed ID: 19658739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gravitaxis of asymmetric self-propelled colloidal particles.
    ten Hagen B; Kümmel F; Wittkowski R; Takagi D; Löwen H; Bechinger C
    Nat Commun; 2014 Sep; 5():4829. PubMed ID: 25234416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Swimming trajectories of a three-sphere microswimmer near a wall.
    Daddi-Moussa-Ider A; Lisicki M; Hoell C; Löwen H
    J Chem Phys; 2018 Apr; 148(13):134904. PubMed ID: 29626882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling crawling cell movement on soft engineered substrates.
    Löber J; Ziebert F; Aranson IS
    Soft Matter; 2014 Mar; 10(9):1365-73. PubMed ID: 24651116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective interactions between colloidal particles suspended in a bath of swimming cells.
    Angelani L; Maggi C; Bernardini ML; Rizzo A; Di Leonardo R
    Phys Rev Lett; 2011 Sep; 107(13):138302. PubMed ID: 22026908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complex self-propelled rings: a minimal model for cell motility.
    Abaurrea Velasco C; Dehghani Ghahnaviyeh S; Nejat Pishkenari H; Auth T; Gompper G
    Soft Matter; 2017 Sep; 13(35):5865-5876. PubMed ID: 28766641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics and separation of circularly moving particles in asymmetrically patterned arrays.
    Reichhardt C; Reichhardt CJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042306. PubMed ID: 24229171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Can the self-propulsion of anisotropic microswimmers be described by using forces and torques?
    ten Hagen B; Wittkowski R; Takagi D; Kümmel F; Bechinger C; Löwen H
    J Phys Condens Matter; 2015 May; 27(19):194110. PubMed ID: 25923010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of hydrodynamic interaction in the locomotion of microorganisms.
    Ramia M; Tullock DL; Phan-Thien N
    Biophys J; 1993 Aug; 65(2):755-78. PubMed ID: 8218901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detention Times of Microswimmers Close to Surfaces: Influence of Hydrodynamic Interactions and Noise.
    Schaar K; Zöttl A; Stark H
    Phys Rev Lett; 2015 Jul; 115(3):038101. PubMed ID: 26230827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coherent structures in monolayers of swimming particles.
    Ishikawa T; Pedley TJ
    Phys Rev Lett; 2008 Feb; 100(8):088103. PubMed ID: 18352669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Swim pressure on walls with curves and corners.
    Smallenburg F; Löwen H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):032304. PubMed ID: 26465470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-dimensional motion of Brownian swimmers in linear flows.
    Sandoval M; Jimenez A
    J Biol Phys; 2016 Mar; 42(2):199-212. PubMed ID: 26428909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clustering and Pattern Formation in Chemorepulsive Active Colloids.
    Liebchen B; Marenduzzo D; Pagonabarraga I; Cates ME
    Phys Rev Lett; 2015 Dec; 115(25):258301. PubMed ID: 26722949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Swim pressure: stress generation in active matter.
    Takatori SC; Yan W; Brady JF
    Phys Rev Lett; 2014 Jul; 113(2):028103. PubMed ID: 25062240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.