These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 23705745)

  • 21. Run-and-tumble particles with hydrodynamics: sedimentation, trapping, and upstream swimming.
    Nash RW; Adhikari R; Tailleur J; Cates ME
    Phys Rev Lett; 2010 Jun; 104(25):258101. PubMed ID: 20867416
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transport of self-propelling bacteria in micro-channel flow.
    Costanzo A; Di Leonardo R; Ruocco G; Angelani L
    J Phys Condens Matter; 2012 Feb; 24(6):065101. PubMed ID: 22231718
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Diffusion of Ellipsoids in Bacterial Suspensions.
    Peng Y; Lai L; Tai YS; Zhang K; Xu X; Cheng X
    Phys Rev Lett; 2016 Feb; 116(6):068303. PubMed ID: 26919019
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nonequilibrium clustering of self-propelled rods.
    Peruani F; Deutsch A; Bär M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 1):030904. PubMed ID: 17025586
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Flow properties and hydrodynamic interactions of rigid spherical microswimmers.
    Adhyapak TC; Jabbari-Farouji S
    Phys Rev E; 2017 Nov; 96(5-1):052608. PubMed ID: 29347781
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A particle-field approach bridges phase separation and collective motion in active matter.
    Großmann R; Aranson IS; Peruani F
    Nat Commun; 2020 Oct; 11(1):5365. PubMed ID: 33097711
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Application of splines to the calculation of bacterial swimming speed distributions.
    Stock GB
    Biophys J; 1976 May; 16(5):535-40. PubMed ID: 1276382
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Brownian motion of a self-propelled particle.
    ten Hagen B; van Teeffelen S; Löwen H
    J Phys Condens Matter; 2011 May; 23(19):194119. PubMed ID: 21525563
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Noisy swimming at low Reynolds numbers.
    Dunkel J; Zaid IM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 1):021903. PubMed ID: 19792147
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Self-propelled Brownian spinning top: dynamics of a biaxial swimmer at low Reynolds numbers.
    Wittkowski R; Löwen H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021406. PubMed ID: 22463211
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Alignment of Nonspherical Active Particles in Chaotic Flows.
    Borgnino M; Gustavsson K; De Lillo F; Boffetta G; Cencini M; Mehlig B
    Phys Rev Lett; 2019 Sep; 123(13):138003. PubMed ID: 31697550
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cell orientation of swimming bacteria: from theoretical simulation to experimental evaluation.
    Ping L
    Sci China Life Sci; 2012 Mar; 55(3):202-9. PubMed ID: 22527516
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stochastic localization of microswimmers by photon nudging.
    Bregulla AP; Yang H; Cichos F
    ACS Nano; 2014 Jul; 8(7):6542-50. PubMed ID: 24861455
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inertial and geometrical effects of self-propelled elliptical Brownian particles.
    Montana F; Camporeale C; Porporato A; Rondoni L
    Phys Rev E; 2023 May; 107(5-1):054607. PubMed ID: 37328983
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Self-starting micromotors in a bacterial bath.
    Angelani L; Di Leonardo R; Ruocco G
    Phys Rev Lett; 2009 Jan; 102(4):048104. PubMed ID: 19257480
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Active and passive particles: modeling beads in a bacterial bath.
    Grégoire G; Chaté H; Tu Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 1):011902. PubMed ID: 11461283
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Physical Sensing of Surface Properties by Microswimmers--Directing Bacterial Motion via Wall Slip.
    Hu J; Wysocki A; Winkler RG; Gompper G
    Sci Rep; 2015 May; 5():9586. PubMed ID: 25993019
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inertial effects of self-propelled particles: From active Brownian to active Langevin motion.
    Löwen H
    J Chem Phys; 2020 Jan; 152(4):040901. PubMed ID: 32007042
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Self-propelled Janus particles in a ratchet: numerical simulations.
    Ghosh PK; Misko VR; Marchesoni F; Nori F
    Phys Rev Lett; 2013 Jun; 110(26):268301. PubMed ID: 23848928
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Active droplet driven by a collective motion of enclosed microswimmers.
    Huang Z; Omori T; Ishikawa T
    Phys Rev E; 2020 Aug; 102(2-1):022603. PubMed ID: 32942463
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.