These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 23705828)

  • 1. Chirality control for in situ preparation of gold nanoparticle superstructures directed by a coordinatable organogelator.
    Zhu L; Li X; Wu S; Nguyen KT; Yan H; Ã…gren H; Zhao Y
    J Am Chem Soc; 2013 Jun; 135(24):9174-80. PubMed ID: 23705828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peptide conjugates for directing the morphology and assembly of 1D nanoparticle superstructures.
    Zhang C; Song C; Fry HC; Rosi NL
    Chemistry; 2014 Jan; 20(4):941-5. PubMed ID: 24356987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Significant Enhancement of the Chiral Correlation Length in Nematic Liquid Crystals by Gold Nanoparticle Surfaces Featuring Axially Chiral Binaphthyl Ligands.
    Mori T; Sharma A; Hegmann T
    ACS Nano; 2016 Jan; 10(1):1552-64. PubMed ID: 26735843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-pot synthesis of responsive catalytic Au@PVP hybrid nanogels.
    Xiao C; Chen S; Zhang L; Zhou S; Wu W
    Chem Commun (Camb); 2012 Dec; 48(96):11751-3. PubMed ID: 23108039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interparticle chiral recognition of enantiomers: a nanoparticle-based regulation strategy.
    Lim II; Mott D; Engelhard MH; Pan Y; Kamodia S; Luo J; Njoki PN; Zhou S; Wang L; Zhong CJ
    Anal Chem; 2009 Jan; 81(2):689-98. PubMed ID: 19072589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sol-gel-sol transition of gold nanoparticle-based supramolecular hydrogels induced by cyclodextrin inclusion.
    Jing B; Chen X; Wang X; Zhao Y; Qiu H
    Chemphyschem; 2008 Feb; 9(2):249-52. PubMed ID: 18181117
    [No Abstract]   [Full Text] [Related]  

  • 7. Postsynthesis racemization and place exchange reactions. Another step to unravel the origin of chirality for chiral ligand-capped gold nanoparticles.
    Qi H; Hegmann T
    J Am Chem Soc; 2008 Oct; 130(43):14201-6. PubMed ID: 18826312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile preparation of gold nanoparticles through autoreduction of gold ions in the presence of fluoroalkyl end-capped cooligomeric aggregates: LCST-triggered sol-gel switching behavior of novel thermoresponsive fluoroalkyl end-capped cooligomeric nanocomposite-encapsulated gold nanoparticles.
    Sawada H; Takahashi K
    J Colloid Interface Sci; 2010 Nov; 351(1):166-70. PubMed ID: 20696437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functionalized gold nanoparticles as phosphorescent nanomaterials and sensors.
    Ipe BI; Yoosaf K; Thomas KG
    J Am Chem Soc; 2006 Feb; 128(6):1907-13. PubMed ID: 16464092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytochrome c Stabilization and Immobilization in Aerogels.
    Harper-Leatherman AS; Wallace JM; Rolison DR
    Methods Mol Biol; 2017; 1504():149-163. PubMed ID: 27770420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detecting, visualizing, and measuring gold nanoparticle chirality using helical pitch measurements in nematic liquid crystal phases.
    Sharma A; Mori T; Lee HC; Worden M; Bidwell E; Hegmann T
    ACS Nano; 2014 Dec; 8(12):11966-76. PubMed ID: 25383947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoparticle superstructures made by polymerase chain reaction: collective interactions of nanoparticles and a new principle for chiral materials.
    Chen W; Bian A; Agarwal A; Liu L; Shen H; Wang L; Xu C; Kotov NA
    Nano Lett; 2009 May; 9(5):2153-9. PubMed ID: 19320495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light-Directed Dynamic Chirality Inversion in Functional Self-Organized Helical Superstructures.
    Bisoyi HK; Li Q
    Angew Chem Int Ed Engl; 2016 Feb; 55(9):2994-3010. PubMed ID: 26764018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Au nanorod helical superstructures with designed chirality.
    Lan X; Lu X; Shen C; Ke Y; Ni W; Wang Q
    J Am Chem Soc; 2015 Jan; 137(1):457-62. PubMed ID: 25516475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The photoinduced formation of gold nanoparticles in a mesoporous titania gel monolith.
    Shen W; Liu F; Qiu J; Yao B
    Nanotechnology; 2009 Mar; 20(10):105605. PubMed ID: 19417525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoparticle assemblies: dimensional transformation of nanomaterials and scalability.
    Xu L; Ma W; Wang L; Xu C; Kuang H; Kotov NA
    Chem Soc Rev; 2013 Apr; 42(7):3114-26. PubMed ID: 23455957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytochrome C stabilization and immobilization in aerogels.
    Harper-Leatherman AS; Wallace JM; Rolison DR
    Methods Mol Biol; 2011; 679():193-205. PubMed ID: 20865398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alkali cold gelation of whey proteins. Part I: sol-gel-sol(-gel) transitions.
    Mercadé-Prieto R; Gunasekaran S
    Langmuir; 2009 May; 25(10):5785-92. PubMed ID: 19432494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tissue and cellular distribution of gold nanoparticles varies based on aggregation/agglomeration status.
    Keene AM; Peters D; Rouse R; Stewart S; Rosen ET; Tyner KM
    Nanomedicine (Lond); 2012 Feb; 7(2):199-209. PubMed ID: 22339133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of 1-D nanoparticle superstructures with tailorable thicknesses using gold-binding peptide conjugates.
    Hwang L; Chen CL; Rosi NL
    Chem Commun (Camb); 2011 Jan; 47(1):185-7. PubMed ID: 20730234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.