These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1049 related articles for article (PubMed ID: 23706081)

  • 21. Ag shell-Au satellite hetero-nanostructure for ultra-sensitive, reproducible, and homogeneous NIR SERS activity.
    Chang H; Kang H; Yang JK; Jo A; Lee HY; Lee YS; Jeong DH
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):11859-63. PubMed ID: 25078544
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Superhydrophobic surface-enhanced Raman scattering platform fabricated by assembly of Ag nanocubes for trace molecular sensing.
    Lee HK; Lee YH; Zhang Q; Phang IY; Tan JM; Cui Y; Ling XY
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11409-18. PubMed ID: 24134617
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis of silver nanowires as a SERS substrate for the detection of pesticide thiram.
    Zhang L; Wang B; Zhu G; Zhou X
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Dec; 133():411-6. PubMed ID: 24973781
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An effective surface-enhanced Raman scattering template based on a Ag nanocluster-ZnO nanowire array.
    Deng S; Fan HM; Zhang X; Loh KP; Cheng CL; Sow CH; Foo YL
    Nanotechnology; 2009 Apr; 20(17):175705. PubMed ID: 19420600
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A 3D Plasmonic Crossed-Wire Nanostructure for Surface-Enhanced Raman Scattering and Plasmon-Enhanced Fluorescence Detection.
    Huang CT; Jan FJ; Chang CC
    Molecules; 2021 Jan; 26(2):. PubMed ID: 33429970
    [TBL] [Abstract][Full Text] [Related]  

  • 26. From single to multiple Ag-layer modification of Au nanocavity substrates: a tunable probe of the chemical surface-enhanced Raman scattering mechanism.
    Tognalli NG; Cortés E; Hernández-Nieves AD; Carro P; Usaj G; Balseiro CA; Vela ME; Salvarezza RC; Fainstein A
    ACS Nano; 2011 Jul; 5(7):5433-43. PubMed ID: 21675769
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Shape control of Ag nanostructures for practical SERS substrates.
    Jeon TY; Park SG; Lee SY; Jeon HC; Yang SM
    ACS Appl Mater Interfaces; 2013 Jan; 5(2):243-8. PubMed ID: 23281631
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Measuring the surface-enhanced Raman scattering enhancement factors of hot spots formed between an individual Ag nanowire and a single Ag nanocube.
    Camargo PH; Cobley CM; Rycenga M; Xia Y
    Nanotechnology; 2009 Oct; 20(43):434020. PubMed ID: 19801754
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quasi-3D gold nanoring cavity arrays with high-density hot-spots for SERS applications via nanosphere lithography.
    Ho CC; Zhao K; Lee TY
    Nanoscale; 2014 Aug; 6(15):8606-11. PubMed ID: 24978350
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Raman scattering of 4-aminobenzenethiol sandwiched between Ag nanoparticle and macroscopically smooth Au substrate: effects of size of Ag nanoparticles and the excitation wavelength.
    Kim K; Choi JY; Lee HB; Shin KS
    J Chem Phys; 2011 Sep; 135(12):124705. PubMed ID: 21974550
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An investigation of the surface-enhanced Raman scattering (SERS) effect from a new substrate of silver-modified silver electrode.
    Wen R; Fang Y
    J Colloid Interface Sci; 2005 Dec; 292(2):469-75. PubMed ID: 16051260
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ag@SiO2 core-shell nanoparticles on silicon nanowire arrays as ultrasensitive and ultrastable substrates for surface-enhanced Raman scattering.
    Zhang CX; Su L; Chan YF; Wu ZL; Zhao YM; Xu HJ; Sun XM
    Nanotechnology; 2013 Aug; 24(33):335501. PubMed ID: 23881155
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Effect of the film of gold nanowire arrays on surface enhanced Raman scattering].
    Zhai XF; Mu C; Xu DS; Tong LM; Zhu T; Du WM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Oct; 28(10):2329-32. PubMed ID: 19123400
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Zinc oxide/silver nanoarrays as reusable SERS substrates with controllable 'hot-spots' for highly reproducible molecular sensing.
    Kandjani AE; Mohammadtaheri M; Thakkar A; Bhargava SK; Bansal V
    J Colloid Interface Sci; 2014 Dec; 436():251-7. PubMed ID: 25278363
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Astronomical liquid mirrors as highly ultrasensitive, broadband-operational surface-enhanced Raman scattering-active substrates.
    Lu TY; Lee YC; Yen YT; Yu CC; Chen HL
    J Colloid Interface Sci; 2016 Mar; 466():80-90. PubMed ID: 26707775
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Three dimensional design of large-scale TiO(2) nanorods scaffold decorated by silver nanoparticles as SERS sensor for ultrasensitive malachite green detection.
    Tan EZ; Yin PG; You TT; Wang H; Guo L
    ACS Appl Mater Interfaces; 2012 Jul; 4(7):3432-7. PubMed ID: 22708788
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ag nanosheet-assembled micro-hemispheres as effective SERS substrates.
    Zhu C; Meng G; Huang Q; Zhang Z; Xu Q; Liu G; Huang Z; Chu Z
    Chem Commun (Camb); 2011 Mar; 47(9):2709-11. PubMed ID: 21180755
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection.
    Huang JA; Zhao YQ; Zhang XJ; He LF; Wong TL; Chui YS; Zhang WJ; Lee ST
    Nano Lett; 2013 Nov; 13(11):5039-45. PubMed ID: 24074380
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fabrication of highly sensitive and reproducible 3D surface-enhanced Raman spectroscopy substrates through in situ cleaning and layer-by-layer assembly of Au@Ag nanocube monolayer film.
    Gao M; Lin X; Li Z; Wang X; Qiao Y; Zhao H; Zhang J; Wang L
    Nanotechnology; 2019 Aug; 30(34):345604. PubMed ID: 31067524
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis of Monolayer Gold Nanorings Sandwich Film and Its Higher Surface-Enhanced Raman Scattering Intensity.
    Zhang L; Zhu T; Yang C; Jang HY; Jang HJ; Liu L; Park S
    Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32183019
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 53.