BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

356 related articles for article (PubMed ID: 23706217)

  • 1. New Ni-free superelastic alloy for orthodontic applications.
    Arciniegas M; Manero JM; Espinar E; Llamas JM; Barrera JM; Gil FJ
    Mater Sci Eng C Mater Biol Appl; 2013 Aug; 33(6):3325-8. PubMed ID: 23706217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Corrosion behavior of shape memory, superelastic, and nonsuperelastic nickel-titanium-based orthodontic wires at various temperatures.
    Pun DK; Berzins DW
    Dent Mater; 2008 Feb; 24(2):221-7. PubMed ID: 17624421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of the microstructure on electrochemical corrosion and nickel release in NiTi orthodontic archwires.
    Briceño J; Romeu A; Espinar E; Llamas JM; Gil FJ
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4989-93. PubMed ID: 24094215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of a nitrogen-implanted titanium-based superelastic alloy with optimized properties for biomedical applications.
    Gordin DM; Busardo D; Cimpean A; Vasilescu C; Höche D; Drob SI; Mitran V; Cornen M; Gloriant T
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4173-82. PubMed ID: 23910330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The electrochemical behavior and surface analysis of Ti50Ni47.2Co2.8 alloy for orthodontic use.
    Wang QY; Zheng YF
    Dent Mater; 2008 Sep; 24(9):1207-11. PubMed ID: 18336899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface mechanical properties, corrosion resistance, and cytocompatibility of nitrogen plasma-implanted nickel-titanium alloys: a comparative study with commonly used medical grade materials.
    Yeung KW; Poon RW; Chu PK; Chung CY; Liu XY; Lu WW; Chan D; Chan SC; Luk KD; Cheung KM
    J Biomed Mater Res A; 2007 Aug; 82(2):403-14. PubMed ID: 17295246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Galvanic corrosion behavior of orthodontic archwire alloys coupled to bracket alloys.
    Iijima M; Endo K; Yuasa T; Ohno H; Hayashi K; Kakizaki M; Mizoguchi I
    Angle Orthod; 2006 Jul; 76(4):705-11. PubMed ID: 16808581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low modulus Ti-Nb-Hf alloy for biomedical applications.
    González M; Peña J; Gil FJ; Manero JM
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():691-5. PubMed ID: 25063170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fracture of Ni-Ti superelastic alloy under sustained tensile load in physiological saline solution containing hydrogen peroxide.
    Yokoyama K; Ogawa T; Fujita A; Asaoka K; Sakai J
    J Biomed Mater Res A; 2007 Sep; 82(3):558-67. PubMed ID: 17311316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface structure and properties of biomedical NiTi shape memory alloy after Fenton's oxidation.
    Chu CL; Hu T; Wu SL; Dong YS; Yin LH; Pu YP; Lin PH; Chung CY; Yeung KW; Chu PK
    Acta Biomater; 2007 Sep; 3(5):795-806. PubMed ID: 17466609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superelastic properties of biomedical (Ti-Zr)-Mo-Sn alloys.
    Ijaz MF; Kim HY; Hosoda H; Miyazaki S
    Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():11-20. PubMed ID: 25579891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparative study of the cytotoxicity and corrosion resistance of nickel-titanium and titanium-niobium shape memory alloys.
    McMahon RE; Ma J; Verkhoturov SV; Munoz-Pinto D; Karaman I; Rubitschek F; Maier HJ; Hahn MS
    Acta Biomater; 2012 Jul; 8(7):2863-70. PubMed ID: 22465573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Length-dependent corrosion behavior, Ni
    Hang R; Liu Y; Bai L; Zhang X; Huang X; Jia H; Tang B
    Mater Sci Eng C Mater Biol Appl; 2018 Aug; 89():1-7. PubMed ID: 29752078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superelasticity, corrosion resistance and biocompatibility of the Ti-19Zr-10Nb-1Fe alloy.
    Xue P; Li Y; Li K; Zhang D; Zhou C
    Mater Sci Eng C Mater Biol Appl; 2015 May; 50():179-86. PubMed ID: 25746260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel Ti-base superelastic alloys with large recovery strain and excellent biocompatibility.
    Fu J; Yamamoto A; Kim HY; Hosoda H; Miyazaki S
    Acta Biomater; 2015 Apr; 17():56-67. PubMed ID: 25676584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microstructure and mechanical behavior of superelastic Ti-24Nb-0.5O and Ti-24Nb-0.5N biomedical alloys.
    Ramarolahy A; Castany P; Prima F; Laheurte P; Péron I; Gloriant T
    J Mech Behav Biomed Mater; 2012 May; 9():83-90. PubMed ID: 22498286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative corrosion study of Ti-Ta alloys for dental applications.
    Mareci D; Chelariu R; Gordin DM; Ungureanu G; Gloriant T
    Acta Biomater; 2009 Nov; 5(9):3625-39. PubMed ID: 19508903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro evaluation of biocompatibility of Ti-Mo-Sn-Zr superelastic alloy.
    Nunome S; Kanetaka H; Kudo TA; Endoh K; Hosoda H; Igarashi K
    J Biomater Appl; 2015 Jul; 30(1):119-30. PubMed ID: 25659946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and thermomechanical behavior of NiTiPt shape memory alloy wires.
    Lin B; Gall K; Maier HJ; Waldron R
    Acta Biomater; 2009 Jan; 5(1):257-67. PubMed ID: 18718825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New surface-hardened, low-modulus, corrosion-resistant Ti-13Nb-13Zr alloy for total hip arthroplasty.
    Davidson JA; Mishra AK; Kovacs P; Poggie RA
    Biomed Mater Eng; 1994; 4(3):231-43. PubMed ID: 7950871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.