These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
533 related articles for article (PubMed ID: 23706743)
1. The eEF2 kinase confers resistance to nutrient deprivation by blocking translation elongation. Leprivier G; Remke M; Rotblat B; Dubuc A; Mateo AR; Kool M; Agnihotri S; El-Naggar A; Yu B; Somasekharan SP; Faubert B; Bridon G; Tognon CE; Mathers J; Thomas R; Li A; Barokas A; Kwok B; Bowden M; Smith S; Wu X; Korshunov A; Hielscher T; Northcott PA; Galpin JD; Ahern CA; Wang Y; McCabe MG; Collins VP; Jones RG; Pollak M; Delattre O; Gleave ME; Jan E; Pfister SM; Proud CG; Derry WB; Taylor MD; Sorensen PH Cell; 2013 May; 153(5):1064-79. PubMed ID: 23706743 [TBL] [Abstract][Full Text] [Related]
2. Eukaryotic elongation factor 2 (eEF2) kinase/eEF2 plays protective roles against glucose deprivation-induced cell death in H9c2 cardiomyoblasts. Kameshima S; Okada M; Yamawaki H Apoptosis; 2019 Apr; 24(3-4):359-368. PubMed ID: 30737648 [TBL] [Abstract][Full Text] [Related]
3. The eEF2 kinase coordinates the DNA damage response to cisplatin by supporting p53 activation. Lim JKM; Samiei A; Delaidelli A; de Santis JO; Brinkmann V; Carnie CJ; Radiloff D; Hruby L; Kahler A; Cran J; Leprivier G; Sorensen PH Cell Death Dis; 2024 Jul; 15(7):501. PubMed ID: 39003251 [TBL] [Abstract][Full Text] [Related]
4. Eukaryotic elongation factor 2 kinase confers tolerance to stress conditions in cancer cells. Zhu H; Yang X; Liu J; Zhou L; Zhang C; Xu L; Qin Q; Zhan L; Lu J; Cheng H; Sun X Cell Stress Chaperones; 2015 Mar; 20(2):217-20. PubMed ID: 25248493 [TBL] [Abstract][Full Text] [Related]
5. Direct and indirect activation of eukaryotic elongation factor 2 kinase by AMP-activated protein kinase. Johanns M; Pyr Dit Ruys S; Houddane A; Vertommen D; Herinckx G; Hue L; Proud CG; Rider MH Cell Signal; 2017 Aug; 36():212-221. PubMed ID: 28502587 [TBL] [Abstract][Full Text] [Related]
6. Silencing of EEF2K (eukaryotic elongation factor-2 kinase) reveals AMPK-ULK1-dependent autophagy in colon cancer cells. Xie CM; Liu XY; Sham KW; Lai JM; Cheng CH Autophagy; 2014 Sep; 10(9):1495-508. PubMed ID: 24955726 [TBL] [Abstract][Full Text] [Related]
7. MYCN amplified neuroblastoma requires the mRNA translation regulator eEF2 kinase to adapt to nutrient deprivation. Delaidelli A; Negri GL; Jan A; Jansonius B; El-Naggar A; Lim JKM; Khan D; Oo HZ; Carnie CJ; Remke M; Maris JM; Leprivier G; Sorensen PH Cell Death Differ; 2017 Sep; 24(9):1564-1576. PubMed ID: 28574509 [TBL] [Abstract][Full Text] [Related]
8. Pharmacological eEF2K activation promotes cell death and inhibits cancer progression. De Gassart A; Demaria O; Panes R; Zaffalon L; Ryazanov AG; Gilliet M; Martinon F EMBO Rep; 2016 Oct; 17(10):1471-1484. PubMed ID: 27572820 [TBL] [Abstract][Full Text] [Related]
9. Eukaryotic elongation factor-2 kinase (eEF2K): a potential therapeutic target in cancer. Fu LL; Xie T; Zhang SY; Liu B Apoptosis; 2014 Oct; 19(10):1527-31. PubMed ID: 25023961 [TBL] [Abstract][Full Text] [Related]
10. Adaptation to starvation: translating a matter of life or death. Manning BD Cancer Cell; 2013 Jun; 23(6):713-5. PubMed ID: 23763997 [TBL] [Abstract][Full Text] [Related]
11. Regulation of the Elongation Phase of Protein Synthesis Enhances Translation Accuracy and Modulates Lifespan. Xie J; de Souza Alves V; von der Haar T; O'Keefe L; Lenchine RV; Jensen KB; Liu R; Coldwell MJ; Wang X; Proud CG Curr Biol; 2019 Mar; 29(5):737-749.e5. PubMed ID: 30773367 [TBL] [Abstract][Full Text] [Related]
12. How does oncogene transformation render tumor cells hypersensitive to nutrient deprivation? Leprivier G; Sorensen PH Bioessays; 2014 Nov; 36(11):1082-90. PubMed ID: 25244326 [TBL] [Abstract][Full Text] [Related]
13. Myostatin inhibits eEF2K-eEF2 by regulating AMPK to suppress protein synthesis. Deng Z; Luo P; Lai W; Song T; Peng J; Wei HK Biochem Biophys Res Commun; 2017 Dec; 494(1-2):278-284. PubMed ID: 29024627 [TBL] [Abstract][Full Text] [Related]
14. Lopinavir impairs protein synthesis and induces eEF2 phosphorylation via the activation of AMP-activated protein kinase. Hong-Brown LQ; Brown CR; Huber DS; Lang CH J Cell Biochem; 2008 Oct; 105(3):814-23. PubMed ID: 18712774 [TBL] [Abstract][Full Text] [Related]
15. [Surviving nutrient deprivation by restraining translation elongation: biological function of the eEF2 kinase]. Leprivier G; Rotblat B; Delattre O; Sorensen PH Med Sci (Paris); 2013 Nov; 29(11):951-3. PubMed ID: 24280494 [No Abstract] [Full Text] [Related]
16. A Ca(2+)-calmodulin-eEF2K-eEF2 signalling cascade, but not AMPK, contributes to the suppression of skeletal muscle protein synthesis during contractions. Rose AJ; Alsted TJ; Jensen TE; Kobberø JB; Maarbjerg SJ; Jensen J; Richter EA J Physiol; 2009 Apr; 587(Pt 7):1547-63. PubMed ID: 19188248 [TBL] [Abstract][Full Text] [Related]
17. Elongation factor eEF2 kinase and autophagy jointly promote survival of cancer cells. Lenchine RV; Rao SR; Wang X; Fang DM; Proud CG Biochem J; 2021 Apr; 478(8):1547-1569. PubMed ID: 33779695 [TBL] [Abstract][Full Text] [Related]
18. Investigating Eukaryotic Elongation Factor 2 Kinase/Eukaryotic Translation Elongation Factor 2 Pathway Regulation and Its Role in Protein Synthesis Impairment during Disuse-Induced Skeletal Muscle Atrophy. Vilchinskaya N; Lim WF; Belova S; Roberts TC; Wood MJA; Lomonosova Y Am J Pathol; 2023 Jun; 193(6):813-828. PubMed ID: 36871751 [TBL] [Abstract][Full Text] [Related]
19. Activity of translation regulator eukaryotic elongation factor-2 kinase is increased in Parkinson disease brain and its inhibition reduces alpha synuclein toxicity. Jan A; Jansonius B; Delaidelli A; Bhanshali F; An YA; Ferreira N; Smits LM; Negri GL; Schwamborn JC; Jensen PH; Mackenzie IR; Taubert S; Sorensen PH Acta Neuropathol Commun; 2018 Jul; 6(1):54. PubMed ID: 29961428 [TBL] [Abstract][Full Text] [Related]
20. Repression of eEF2K transcription by NF-κB tunes translation elongation to inflammation and dsDNA-sensing. Bianco C; Thompson L; Mohr I Proc Natl Acad Sci U S A; 2019 Nov; 116(45):22583-22590. PubMed ID: 31636182 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]