These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
662 related articles for article (PubMed ID: 23707251)
1. Development of innovative paclitaxel-loaded small PLGA nanoparticles: study of their antiproliferative activity and their molecular interactions on prostatic cancer cells. Le Broc-Ryckewaert D; Carpentier R; Lipka E; Daher S; Vaccher C; Betbeder D; Furman C Int J Pharm; 2013 Oct; 454(2):712-9. PubMed ID: 23707251 [TBL] [Abstract][Full Text] [Related]
2. Paclitaxel loaded folic acid targeted nanoparticles of mixed lipid-shell and polymer-core: in vitro and in vivo evaluation. Zhao P; Wang H; Yu M; Liao Z; Wang X; Zhang F; Ji W; Wu B; Han J; Zhang H; Wang H; Chang J; Niu R Eur J Pharm Biopharm; 2012 Jun; 81(2):248-56. PubMed ID: 22446630 [TBL] [Abstract][Full Text] [Related]
3. A novel technique for loading of paclitaxel-PLGA nanoparticles onto ePTFE vascular grafts. Lim HJ; Nam HY; Lee BH; Kim DJ; Ko JY; Park JS Biotechnol Prog; 2007; 23(3):693-7. PubMed ID: 17465527 [TBL] [Abstract][Full Text] [Related]
4. In-vitro evaluation of paclitaxel-loaded MPEG-PLGA nanoparticles on laryngeal cancer cells. Gao C; Pan J; Lu W; Zhang M; Zhou L; Tian J Anticancer Drugs; 2009 Oct; 20(9):807-14. PubMed ID: 19696655 [TBL] [Abstract][Full Text] [Related]
5. Nanoparticles of lipid monolayer shell and biodegradable polymer core for controlled release of paclitaxel: effects of surfactants on particles size, characteristics and in vitro performance. Liu Y; Pan J; Feng SS Int J Pharm; 2010 Aug; 395(1-2):243-50. PubMed ID: 20472049 [TBL] [Abstract][Full Text] [Related]
6. Enhanced in vitro antiproliferative effects of EpCAM antibody-functionalized paclitaxel-loaded PLGA nanoparticles in retinoblastoma cells. Mitra M; Misra R; Harilal A; Sahoo SK; Krishnakumar S Mol Vis; 2011; 17():2724-37. PubMed ID: 22065926 [TBL] [Abstract][Full Text] [Related]
7. Paclitaxel-loaded PEGylated PLGA-based nanoparticles: in vitro and in vivo evaluation. Danhier F; Lecouturier N; Vroman B; Jérôme C; Marchand-Brynaert J; Feron O; Préat V J Control Release; 2009 Jan; 133(1):11-7. PubMed ID: 18950666 [TBL] [Abstract][Full Text] [Related]
8. Paclitaxel-loaded and A10-3.2 aptamer-targeted poly(lactide- Wu M; Wang Y; Wang Y; Zhang M; Luo Y; Tang J; Wang Z; Wang D; Hao L; Wang Z Int J Nanomedicine; 2017; 12():5313-5330. PubMed ID: 28794625 [TBL] [Abstract][Full Text] [Related]
9. Synthesis, characterization, and evaluation of paclitaxel loaded in six-arm star-shaped poly(lactic-co-glycolic acid). Chen Y; Yang Z; Liu C; Wang C; Zhao S; Yang J; Sun H; Zhang Z; Kong D; Song C Int J Nanomedicine; 2013; 8():4315-26. PubMed ID: 24235829 [TBL] [Abstract][Full Text] [Related]
10. Dual-layer surface coating of PLGA-based nanoparticles provides slow-release drug delivery to achieve metronomic therapy in a paclitaxel-resistant murine ovarian cancer model. Amoozgar Z; Wang L; Brandstoetter T; Wallis SS; Wilson EM; Goldberg MS Biomacromolecules; 2014 Nov; 15(11):4187-94. PubMed ID: 25251833 [TBL] [Abstract][Full Text] [Related]
11. Developing combination of artesunate with paclitaxel loaded into poly-d,l-lactic-co-glycolic acid nanoparticle for systemic delivery to exhibit synergic chemotherapeutic response. Tran BN; Nguyen HT; Kim JO; Yong CS; Nguyen CN Drug Dev Ind Pharm; 2017 Dec; 43(12):1952-1962. PubMed ID: 28724314 [TBL] [Abstract][Full Text] [Related]
12. Susceptibility of nanoparticle-encapsulated paclitaxel to P-glycoprotein-mediated drug efflux. Chavanpatil MD; Patil Y; Panyam J Int J Pharm; 2006 Aug; 320(1-2):150-6. PubMed ID: 16713148 [TBL] [Abstract][Full Text] [Related]
13. Wheat germ agglutinin-conjugated PLGA nanoparticles for enhanced intracellular delivery of paclitaxel to colon cancer cells. Wang C; Ho PC; Lim LY Int J Pharm; 2010 Nov; 400(1-2):201-10. PubMed ID: 20804835 [TBL] [Abstract][Full Text] [Related]
14. Preparation and evaluation of paclitaxel-loaded nanoparticle incorporated with galactose-carrying polymer for hepatocyte targeted delivery. Wang Y; Jiang G; Qiu T; Ding F Drug Dev Ind Pharm; 2012 Sep; 38(9):1039-46. PubMed ID: 22124381 [TBL] [Abstract][Full Text] [Related]
15. Controlled preparation and antitumor efficacy of vitamin E TPGS-functionalized PLGA nanoparticles for delivery of paclitaxel. Wang G; Yu B; Wu Y; Huang B; Yuan Y; Liu CS Int J Pharm; 2013 Mar; 446(1-2):24-33. PubMed ID: 23402977 [TBL] [Abstract][Full Text] [Related]
16. Vitamin E-Oligo(methyl diglycol l-glutamate) as a Biocompatible and Functional Surfactant for Facile Preparation of Active Tumor-Targeting PLGA Nanoparticles. Wu J; Zhang J; Deng C; Meng F; Zhong Z Biomacromolecules; 2016 Jul; 17(7):2367-74. PubMed ID: 27305935 [TBL] [Abstract][Full Text] [Related]
17. Lung-specific delivery of paclitaxel by chitosan-modified PLGA nanoparticles via transient formation of microaggregates. Yang R; Yang SG; Shim WS; Cui F; Cheng G; Kim IW; Kim DD; Chung SJ; Shim CK J Pharm Sci; 2009 Mar; 98(3):970-84. PubMed ID: 18661542 [TBL] [Abstract][Full Text] [Related]
18. Development of a novel morphological paclitaxel-loaded PLGA microspheres for effective cancer therapy: in vitro and in vivo evaluations. Zhang Z; Wang X; Li B; Hou Y; Yang J; Yi L Drug Deliv; 2018 Nov; 25(1):166-177. PubMed ID: 29299936 [TBL] [Abstract][Full Text] [Related]
19. Self-assembled biodegradable nanoparticles developed by direct dialysis for the delivery of paclitaxel. Xie J; Wang CH Pharm Res; 2005 Dec; 22(12):2079-90. PubMed ID: 16132339 [TBL] [Abstract][Full Text] [Related]
20. [Surface-modified paclitaxel-loaded nanoparticles as local delivery system for the prevention of vessel restenosis]. Mei L; Song CX; Jin X; Che YZ; Jin Z; Sun HF Yao Xue Xue Bao; 2007 Jan; 42(1):81-6. PubMed ID: 17520813 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]