BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

408 related articles for article (PubMed ID: 23707327)

  • 1. Oxidative damage and cellular defense mechanisms in sea urchin models of aging.
    Du C; Anderson A; Lortie M; Parsons R; Bodnar A
    Free Radic Biol Med; 2013 Oct; 63():254-63. PubMed ID: 23707327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic profiles reveal age-related changes in coelomic fluid of sea urchin species with different life spans.
    Bodnar A
    Exp Gerontol; 2013 May; 48(5):525-30. PubMed ID: 23453931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Senescence and Longevity of Sea Urchins.
    Amir Y; Insler M; Giller A; Gutman D; Atzmon G
    Genes (Basel); 2020 May; 11(5):. PubMed ID: 32443861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduced mitochondrial ROS, enhanced antioxidant defense, and distinct age-related changes in oxidative damage in muscles of long-lived Peromyscus leucopus.
    Shi Y; Pulliam DA; Liu Y; Hamilton RT; Jernigan AL; Bhattacharya A; Sloane LB; Qi W; Chaudhuri A; Buffenstein R; Ungvari Z; Austad SN; Van Remmen H
    Am J Physiol Regul Integr Comp Physiol; 2013 Mar; 304(5):R343-55. PubMed ID: 23325454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maintenance of somatic tissue regeneration with age in short- and long-lived species of sea urchins.
    Bodnar AG; Coffman JA
    Aging Cell; 2016 Aug; 15(4):778-87. PubMed ID: 27095483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Does the oxidative stress theory of aging explain longevity differences in birds? II. Antioxidant systems and oxidative damage.
    Montgomery MK; Buttemer WA; Hulbert AJ
    Exp Gerontol; 2012 Mar; 47(3):211-22. PubMed ID: 22230489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mitochondrial free radical theory of aging: a critical view.
    Sanz A; Stefanatos RK
    Curr Aging Sci; 2008 Mar; 1(1):10-21. PubMed ID: 20021368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unique age-related transcriptional signature in the nervous system of the long-lived red sea urchin Mesocentrotus franciscanus.
    Polinski JM; Kron N; Smith DR; Bodnar AG
    Sci Rep; 2020 Jun; 10(1):9182. PubMed ID: 32514014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Longevity and lack of senescence in the red sea urchin Strongylocentrotus franciscanus.
    Ebert TA
    Exp Gerontol; 2008 Aug; 43(8):734-8. PubMed ID: 18550313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Negative senescence in sea urchins.
    Ebert TA
    Exp Gerontol; 2019 Jul; 122():92-98. PubMed ID: 31063808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gender differences in free radical homeostasis during aging: shorter-lived female C57BL6 mice have increased oxidative stress.
    Ali SS; Xiong C; Lucero J; Behrens MM; Dugan LL; Quick KL
    Aging Cell; 2006 Dec; 5(6):565-74. PubMed ID: 17129217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellular and molecular mechanisms of negligible senescence: insight from the sea urchin.
    Bodnar AG
    Invertebr Reprod Dev; 2015 Jan; 59(sup1):23-27. PubMed ID: 26136616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repression of the mitochondrial peroxiredoxin antioxidant system does not shorten life span but causes reduced fitness in Caenorhabditis elegans.
    Ranjan M; Gruber J; Ng LF; Halliwell B
    Free Radic Biol Med; 2013 Oct; 63():381-9. PubMed ID: 23722165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lack of age-associated telomere shortening in long- and short-lived species of sea urchins.
    Francis N; Gregg T; Owen R; Ebert T; Bodnar A
    FEBS Lett; 2006 Aug; 580(19):4713-7. PubMed ID: 16876792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Testing predictions of the oxidative stress hypothesis of aging using a novel invertebrate model of longevity: the giant clam (Tridacna derasa).
    Ungvari Z; Csiszar A; Sosnowska D; Philipp EE; Campbell CM; McQuary PR; Chow TT; Coelho M; Didier ES; Gelino S; Holmbeck MA; Kim I; Levy E; Sonntag WE; Whitby PW; Austad SN; Ridgway I
    J Gerontol A Biol Sci Med Sci; 2013 Apr; 68(4):359-67. PubMed ID: 22904097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thioredoxin 1 overexpression extends mainly the earlier part of life span in mice.
    PĂ©rez VI; Cortez LA; Lew CM; Rodriguez M; Webb CR; Van Remmen H; Chaudhuri A; Qi W; Lee S; Bokov A; Fok W; Jones D; Richardson A; Yodoi J; Zhang Y; Tominaga K; Hubbard GB; Ikeno Y
    J Gerontol A Biol Sci Med Sci; 2011 Dec; 66(12):1286-99. PubMed ID: 21873593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aging in vertebrates, and the effect of caloric restriction: a mitochondrial free radical production-DNA damage mechanism?
    Barja G
    Biol Rev Camb Philos Soc; 2004 May; 79(2):235-51. PubMed ID: 15191224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hepatitis C virus core protein inhibits deoxycholic acid-mediated apoptosis despite generating mitochondrial reactive oxygen species.
    Hara Y; Hino K; Okuda M; Furutani T; Hidaka I; Yamaguchi Y; Korenaga M; Li K; Weinman SA; Lemon SM; Okita K
    J Gastroenterol; 2006 Mar; 41(3):257-68. PubMed ID: 16699860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Age-related sensitivity to lung oxidative stress during ozone exposure.
    Servais S; Boussouar A; Molnar A; Douki T; Pequignot JM; Favier R
    Free Radic Res; 2005 Mar; 39(3):305-16. PubMed ID: 15788235
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 21.