BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 23707606)

  • 21. Increased superoxide and endothelial NO synthase uncoupling in blood vessels of Bmal1-knockout mice.
    Anea CB; Cheng B; Sharma S; Kumar S; Caldwell RW; Yao L; Ali MI; Merloiu AM; Stepp DW; Black SM; Fulton DJ; Rudic RD
    Circ Res; 2012 Oct; 111(9):1157-65. PubMed ID: 22912383
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ascorbic acid enhances endothelial nitric-oxide synthase activity by increasing intracellular tetrahydrobiopterin.
    Huang A; Vita JA; Venema RC; Keaney JF
    J Biol Chem; 2000 Jun; 275(23):17399-406. PubMed ID: 10749876
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tetrahydrobiopterin impairs the action of endothelial nitric oxide via superoxide derived from platelets.
    Tajima M; Sakagami H
    Br J Pharmacol; 2000 Nov; 131(5):958-64. PubMed ID: 11053217
    [TBL] [Abstract][Full Text] [Related]  

  • 24. PPARδ agonist prevents endothelial dysfunction via induction of dihydrofolate reductase gene and activation of tetrahydrobiopterin salvage pathway.
    Zhang Z; Xie X; Yao Q; Liu J; Tian Y; Yang C; Xiao L; Wang N
    Br J Pharmacol; 2019 Aug; 176(16):2945-2961. PubMed ID: 31144304
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reaction of tetrahydrobiopterin with superoxide: EPR-kinetic analysis and characterization of the pteridine radical.
    Vásquez-Vivar J; Whitsett J; Martásek P; Hogg N; Kalyanaraman B
    Free Radic Biol Med; 2001 Oct; 31(8):975-85. PubMed ID: 11595382
    [TBL] [Abstract][Full Text] [Related]  

  • 26. L-ascorbic acid potentiates endothelial nitric oxide synthesis via a chemical stabilization of tetrahydrobiopterin.
    Heller R; Unbehaun A; Schellenberg B; Mayer B; Werner-Felmayer G; Werner ER
    J Biol Chem; 2001 Jan; 276(1):40-7. PubMed ID: 11022034
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tetrahydrobiopterin-dependent inhibition of superoxide generation from neuronal nitric oxide synthase.
    Vásquez-Vivar J; Hogg N; Martásek P; Karoui H; Pritchard KA; Kalyanaraman B
    J Biol Chem; 1999 Sep; 274(38):26736-42. PubMed ID: 10480877
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Oxidation of tetrahydrobiopterin by peroxynitrite: implications for vascular endothelial function.
    Milstien S; Katusic Z
    Biochem Biophys Res Commun; 1999 Oct; 263(3):681-4. PubMed ID: 10512739
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tetrahydrobiopterin: regulator of endothelial nitric oxide synthase in vascular disease.
    Channon KM
    Trends Cardiovasc Med; 2004 Nov; 14(8):323-7. PubMed ID: 15596110
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tetrahydrobiopterin and endothelial nitric oxide synthase activity.
    Cosentino F; Lüscher TF
    Cardiovasc Res; 1999 Aug; 43(2):274-8. PubMed ID: 10536654
    [No Abstract]   [Full Text] [Related]  

  • 31. Interactions of peroxynitrite, tetrahydrobiopterin, ascorbic acid, and thiols: implications for uncoupling endothelial nitric-oxide synthase.
    Kuzkaya N; Weissmann N; Harrison DG; Dikalov S
    J Biol Chem; 2003 Jun; 278(25):22546-54. PubMed ID: 12692136
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Augmented BH4 by gene transfer restores nitric oxide synthase function in hyperglycemic human endothelial cells.
    Cai S; Khoo J; Channon KM
    Cardiovasc Res; 2005 Mar; 65(4):823-31. PubMed ID: 15721862
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation of endothelial cell tetrahydrobiopterin pathophysiological and therapeutic implications.
    Harrison DG; Chen W; Dikalov S; Li L
    Adv Pharmacol; 2010; 60():107-32. PubMed ID: 21081217
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Disturbed biopterin and folate metabolism in the Qdpr-deficient mouse.
    Xu F; Sudo Y; Sanechika S; Yamashita J; Shimaguchi S; Honda S; Sumi-Ichinose C; Mori-Kojima M; Nakata R; Furuta T; Sakurai M; Sugimoto M; Soga T; Kondo K; Ichinose H
    FEBS Lett; 2014 Nov; 588(21):3924-31. PubMed ID: 25240194
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Novel Treatment of Hypertension by Specifically Targeting E2F for Restoration of Endothelial Dihydrofolate Reductase and eNOS Function Under Oxidative Stress.
    Li H; Li Q; Zhang Y; Liu W; Gu B; Narumi T; Siu KL; Youn JY; Liu P; Yang X; Cai H
    Hypertension; 2019 Jan; 73(1):179-189. PubMed ID: 30571557
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chemical stabilization of tetrahydrobiopterin by L-ascorbic acid: contribution to placental endothelial nitric oxide synthase activity.
    Tóth M; Kukor Z; Valent S
    Mol Hum Reprod; 2002 Mar; 8(3):271-80. PubMed ID: 11870235
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Carboxy-PTIO increases the tetrahydrobiopterin level in mouse brain microvascular endothelial cells.
    Shimizu S; Ishii M; Iwasaki M; Shiota K; Yamamoto T; Kiuchi Y
    Jpn J Pharmacol; 2001 Sep; 87(1):51-60. PubMed ID: 11676198
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Long-term vitamin C treatment increases vascular tetrahydrobiopterin levels and nitric oxide synthase activity.
    d'Uscio LV; Milstien S; Richardson D; Smith L; Katusic ZS
    Circ Res; 2003 Jan; 92(1):88-95. PubMed ID: 12522125
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Acceleration of oxidative stress-induced endothelial cell death by nitric oxide synthase dysfunction accompanied with decrease in tetrahydrobiopterin content.
    Ishii M; Shimizu S; Yamamoto T; Momose K; Kuroiwa Y
    Life Sci; 1997; 61(7):739-47. PubMed ID: 9252248
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of cerebral microvasculature in transgenic mice with endothelium targeted over-expression of GTP-cyclohydrolase I.
    Santhanam AV; d'Uscio LV; Katusic ZS
    Brain Res; 2015 Nov; 1625():198-205. PubMed ID: 26343845
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.