BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 23708192)

  • 1. Polarization control of Raman spectroscopy optimizes the assessment of bone tissue.
    Makowski AJ; Patil CA; Mahadevan-Jansen A; Nyman JS
    J Biomed Opt; 2013 May; 18(5):55005. PubMed ID: 23708192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Raman and Fourier Transform Infrared (FT-IR) Mineral to Matrix Ratios Correlate with Physical Chemical Properties of Model Compounds and Native Bone Tissue.
    Taylor EA; Lloyd AA; Salazar-Lara C; Donnelly E
    Appl Spectrosc; 2017 Oct; 71(10):2404-2410. PubMed ID: 28485618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring differences in compositional properties of bone tissue by confocal Raman spectroscopy.
    Nyman JS; Makowski AJ; Patil CA; Masui TP; O'Quinn EC; Bi X; Guelcher SA; Nicollela DP; Mahadevan-Jansen A
    Calcif Tissue Int; 2011 Aug; 89(2):111-22. PubMed ID: 21597909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitivity of the amide I band to matrix manipulation in bone: a Raman micro-spectroscopy and spatially offset Raman spectroscopy study.
    Ahmed R; Unal M; Gautam R; Uppuganti S; Derasari S; Mahadevan-Jansen A; Nyman JS
    Analyst; 2023 Sep; 148(19):4799-4809. PubMed ID: 37602820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Orientation of Nanoscale Apatite Platelets in Relation to Osteoblastic-Osteocyte Lacunae on Trabecular Bone Surface.
    Shah FA; Zanghellini E; Matic A; Thomsen P; Palmquist A
    Calcif Tissue Int; 2016 Feb; 98(2):193-205. PubMed ID: 26472430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compositional assessment of bone by Raman spectroscopy.
    Unal M; Ahmed R; Mahadevan-Jansen A; Nyman JS
    Analyst; 2021 Dec; 146(24):7464-7490. PubMed ID: 34786574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between the v₂PO₄/amide III ratio assessed by Raman spectroscopy and the calcium content measured by quantitative backscattered electron microscopy in healthy human osteonal bone.
    Roschger A; Gamsjaeger S; Hofstetter B; Masic A; Blouin S; Messmer P; Berzlanovich A; Paschalis EP; Roschger P; Klaushofer K; Fratzl P
    J Biomed Opt; 2014 Jun; 19(6):065002. PubMed ID: 24919447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Raman and mechanical properties correlate at whole bone- and tissue-levels in a genetic mouse model.
    Bi X; Patil CA; Lynch CC; Pharr GM; Mahadevan-Jansen A; Nyman JS
    J Biomech; 2011 Jan; 44(2):297-303. PubMed ID: 21035119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone osteonal tissues by Raman spectral mapping: orientation-composition.
    Kazanci M; Roschger P; Paschalis EP; Klaushofer K; Fratzl P
    J Struct Biol; 2006 Dec; 156(3):489-96. PubMed ID: 16931054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards refining Raman spectroscopy-based assessment of bone composition.
    Shah FA
    Sci Rep; 2020 Oct; 10(1):16662. PubMed ID: 33028904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D Raman mapping of the collagen fibril orientation in human osteonal lamellae.
    Schrof S; Varga P; Galvis L; Raum K; Masic A
    J Struct Biol; 2014 Sep; 187(3):266-275. PubMed ID: 25025981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of composition and structure of spongy bone tissue in human head of femur by Raman spectral mapping.
    Kozielski M; Buchwald T; Szybowicz M; Błaszczak Z; Piotrowski A; Ciesielczyk B
    J Mater Sci Mater Med; 2011 Jul; 22(7):1653-61. PubMed ID: 21626309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional adaptation of long bone extremities involves the localized "tuning" of the cortical bone composition; evidence from Raman spectroscopy.
    Buckley K; Kerns JG; Birch HL; Gikas PD; Parker AW; Matousek P; Goodship AE
    J Biomed Opt; 2014; 19(11):111602. PubMed ID: 24839942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polarization in Raman spectroscopy helps explain bone brittleness in genetic mouse models.
    Makowski AJ; Pence IJ; Uppuganti S; Zein-Sabatto A; Huszagh MC; Mahadevan-Jansen A; Nyman JS
    J Biomed Opt; 2014; 19(11):117008. PubMed ID: 25402627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New method for Raman investigation of the orientation of collagen fibrils and crystallites in the Haversian system of bone.
    Falgayrac G; Facq S; Leroy G; Cortet B; Penel G
    Appl Spectrosc; 2010 Jul; 64(7):775-80. PubMed ID: 20615291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing Raman spectroscopy as a prescreening tool for the selection of archaeological bone for stable isotopic analysis.
    Halcrow SE; Rooney J; Beavan N; Gordon KC; Tayles N; Gray A
    PLoS One; 2014; 9(7):e98462. PubMed ID: 25062283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Repeated freeze-thawing of bone tissue affects Raman bone quality measurements.
    McElderry JD; Kole MR; Morris MD
    J Biomed Opt; 2011 Jul; 16(7):071407. PubMed ID: 21806253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of glycosaminoglycan content in bone using Raman spectroscopy.
    Heath S; Han Y; Hua R; Roy A; Jiang J; Nyman JS; Wang X
    Bone; 2023 Jun; 171():116751. PubMed ID: 36996996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of Raman spectral markers to assess metastatic bone in breast cancer.
    Ding H; Nyman JS; Sterling JA; Perrien DS; Mahadevan-Jansen A; Bi X
    J Biomed Opt; 2014; 19(11):111606. PubMed ID: 24933683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The tendon-to-bone transition of the rotator cuff: a preliminary Raman spectroscopic study documenting the gradual mineralization across the insertion in rat tissue samples.
    Wopenka B; Kent A; Pasteris JD; Yoon Y; Thomopoulos S
    Appl Spectrosc; 2008 Dec; 62(12):1285-94. PubMed ID: 19094386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.