These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 23708573)
1. Reduction of bacteriophage MS2 by filtration and irradiation determined by culture and quantitative real-time RT-PCR. Lodder WJ; van den Berg HH; Rutjes SA; Bouwknegt M; Schijven JF; de Roda Husman AM J Water Health; 2013 Jun; 11(2):256-66. PubMed ID: 23708573 [TBL] [Abstract][Full Text] [Related]
2. Size exclusion-based purification and PCR-based quantitation of MS2 bacteriophage particles for environmental applications. Farkas K; Varsani A; Marjoshi D; Easingwood R; McGill E; Pang L J Virol Methods; 2015 Mar; 213():135-8. PubMed ID: 25528201 [TBL] [Abstract][Full Text] [Related]
3. Removal of MS2, Qβ and GA bacteriophages during drinking water treatment at pilot scale. Boudaud N; Machinal C; David F; Fréval-Le Bourdonnec A; Jossent J; Bakanga F; Arnal C; Jaffrezic MP; Oberti S; Gantzer C Water Res; 2012 May; 46(8):2651-64. PubMed ID: 22421032 [TBL] [Abstract][Full Text] [Related]
4. Inactivation of MS2 coliphage by UV and hydrogen peroxide: comparison by cultural and molecular methodologies. Sherchan SP; Snyder SA; Gerba CP; Pepper IL J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(4):397-403. PubMed ID: 24345237 [TBL] [Abstract][Full Text] [Related]
5. Comparison of UV-Induced Inactivation and RNA Damage in MS2 Phage across the Germicidal UV Spectrum. Beck SE; Rodriguez RA; Hawkins MA; Hargy TM; Larason TC; Linden KG Appl Environ Microbiol; 2015 Dec; 82(5):1468-1474. PubMed ID: 26712541 [TBL] [Abstract][Full Text] [Related]
6. Duplex real-time qRT-PCR for the detection of hepatitis A virus in water and raspberries using the MS2 bacteriophage as a process control. Blaise-Boisseau S; Hennechart-Collette C; Guillier L; Perelle S J Virol Methods; 2010 Jun; 166(1-2):48-53. PubMed ID: 20188760 [TBL] [Abstract][Full Text] [Related]
7. A mathematical model for removal of human pathogenic viruses and bacteria by slow sand filtration under variable operational conditions. Schijven JF; van den Berg HH; Colin M; Dullemont Y; Hijnen WA; Magic-Knezev A; Oorthuizen WA; Wubbels G Water Res; 2013 May; 47(7):2592-602. PubMed ID: 23490102 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of the suitability of a plant virus, pepper mild mottle virus, as a surrogate of human enteric viruses for assessment of the efficacy of coagulation-rapid sand filtration to remove those viruses. Shirasaki N; Matsushita T; Matsui Y; Yamashita R Water Res; 2018 Feb; 129():460-469. PubMed ID: 29182907 [TBL] [Abstract][Full Text] [Related]
9. Influence of algal organic matter on MS2 bacteriophage inactivation by ultraviolet irradiation at 220 nm and 254 nm. Wang Y; Araud E; Shisler JL; Nguyen TH; Yuan B Chemosphere; 2019 Jan; 214():195-202. PubMed ID: 30265926 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of Bacillus subtilis and coliphage MS2 as indicators of advanced water treatment efficiency. Huertas A; Barbeau B; Desjardins C; Galarza A; Figueroa MA; Toranzos GA Water Sci Technol; 2003; 47(3):255-9. PubMed ID: 12639038 [TBL] [Abstract][Full Text] [Related]
11. Attachment, re-mobilization, and inactivation of bacteriophage MS2 during bank filtration following simulation of a high virus load and an extreme rain event. Wang H; Kaletta J; Kaschuba S; Klitzke S; Chorus I; Griebler C J Contam Hydrol; 2022 Apr; 246():103960. PubMed ID: 35066264 [TBL] [Abstract][Full Text] [Related]
12. Comparison of behaviors of two surrogates for pathogenic waterborne viruses, bacteriophages Qbeta and MS2, during the aluminum coagulation process. Shirasaki N; Matsushita T; Matsui Y; Urasaki T; Ohno K Water Res; 2009 Feb; 43(3):605-12. PubMed ID: 19042000 [TBL] [Abstract][Full Text] [Related]
13. Use of bacteriophage MS2 as an internal control in viral reverse transcription-PCR assays. Dreier J; Störmer M; Kleesiek K J Clin Microbiol; 2005 Sep; 43(9):4551-7. PubMed ID: 16145106 [TBL] [Abstract][Full Text] [Related]
14. Bacterial, viral and turbidity removal by intermittent slow sand filtration for household use in developing countries: experimental investigation and modeling. Jenkins MW; Tiwari SK; Darby J Water Res; 2011 Nov; 45(18):6227-39. PubMed ID: 21974872 [TBL] [Abstract][Full Text] [Related]
15. Effects of ionic strength on bacteriophage MS2 behavior and their implications for the assessment of virus retention by ultrafiltration membranes. Furiga A; Pierre G; Glories M; Aimar P; Roques C; Causserand C; Berge M Appl Environ Microbiol; 2011 Jan; 77(1):229-36. PubMed ID: 21075898 [TBL] [Abstract][Full Text] [Related]
16. Internal control for real-time polymerase chain reaction based on MS2 bacteriophage for RNA viruses diagnostics. Zambenedetti MR; Pavoni DP; Dallabona AC; Dominguez AC; Poersch CO; Fragoso SP; Krieger MA Mem Inst Oswaldo Cruz; 2017 May; 112(5):339-347. PubMed ID: 28403327 [TBL] [Abstract][Full Text] [Related]
17. Intermittent versus continuous operation of biosand filters. Young-Rojanschi C; Madramootoo C Water Res; 2014 Feb; 49():1-10. PubMed ID: 24316177 [TBL] [Abstract][Full Text] [Related]
18. High performance concentration method for viruses in drinking water. Kunze A; Pei L; Elsässer D; Niessner R; Seidel M J Virol Methods; 2015 Sep; 222():132-7. PubMed ID: 26093027 [TBL] [Abstract][Full Text] [Related]
19. Comparison of RNA extraction kits for the purification and detection of an enteric virus surrogate on green onions via RT-PCR. Xu R; Shieh YC; Stewart DS J Virol Methods; 2017 Jan; 239():61-68. PubMed ID: 27836658 [TBL] [Abstract][Full Text] [Related]
20. Removal of particle-associated bacteriophages by dual-media filtration at different filter cycle stages and impacts on subsequent UV disinfection. Templeton MR; Andrews RC; Hofmann R Water Res; 2007 Jun; 41(11):2393-406. PubMed ID: 17433406 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]