These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 23708951)
1. BAC-end sequences analysis provides first insights into coffee (Coffea canephora P.) genome composition and evolution. Dereeper A; Guyot R; Tranchant-Dubreuil C; Anthony F; Argout X; de Bellis F; Combes MC; Gavory F; de Kochko A; Kudrna D; Leroy T; Poulain J; Rondeau M; Song X; Wing R; Lashermes P Plant Mol Biol; 2013 Oct; 83(3):177-89. PubMed ID: 23708951 [TBL] [Abstract][Full Text] [Related]
2. Microcollinearity in an ethylene receptor coding gene region of the Coffea canephora genome is extensively conserved with Vitis vinifera and other distant dicotyledonous sequenced genomes. Guyot R; de la Mare M; Viader V; Hamon P; Coriton O; Bustamante-Porras J; Poncet V; Campa C; Hamon S; de Kochko A BMC Plant Biol; 2009 Feb; 9():22. PubMed ID: 19243618 [TBL] [Abstract][Full Text] [Related]
3. Ancestral synteny shared between distantly-related plant species from the asterid (Coffea canephora and Solanum Sp.) and rosid (Vitis vinifera) clades. Guyot R; Lefebvre-Pautigny F; Tranchant-Dubreuil C; Rigoreau M; Hamon P; Leroy T; Hamon S; Poncet V; Crouzillat D; de Kochko A BMC Genomics; 2012 Mar; 13():103. PubMed ID: 22433423 [TBL] [Abstract][Full Text] [Related]
4. An overview of the Phalaenopsis orchid genome through BAC end sequence analysis. Hsu CC; Chung YL; Chen TC; Lee YL; Kuo YT; Tsai WC; Hsiao YY; Chen YW; Wu WL; Chen HH BMC Plant Biol; 2011 Jan; 11():3. PubMed ID: 21208460 [TBL] [Abstract][Full Text] [Related]
5. Chromosome arm-specific BAC end sequences permit comparative analysis of homoeologous chromosomes and genomes of polyploid wheat. Sehgal SK; Li W; Rabinowicz PD; Chan A; Simková H; Doležel J; Gill BS BMC Plant Biol; 2012 May; 12():64. PubMed ID: 22559868 [TBL] [Abstract][Full Text] [Related]
6. Characterizing the walnut genome through analyses of BAC end sequences. Wu J; Gu YQ; Hu Y; You FM; Dandekar AM; Leslie CA; Aradhya M; Dvorak J; Luo MC Plant Mol Biol; 2012 Jan; 78(1-2):95-107. PubMed ID: 22101470 [TBL] [Abstract][Full Text] [Related]
7. Analysis of BAC end sequences in oak, a keystone forest tree species, providing insight into the composition of its genome. Faivre Rampant P; Lesur I; Boussardon C; Bitton F; Martin-Magniette ML; Bodénès C; Le Provost G; Bergès H; Fluch S; Kremer A; Plomion C BMC Genomics; 2011 Jun; 12():292. PubMed ID: 21645357 [TBL] [Abstract][Full Text] [Related]
8. A genome-wide BAC-end sequence survey provides first insights into sweetpotato (Ipomoea batatas (L.) Lam.) genome composition. Si Z; Du B; Huo J; He S; Liu Q; Zhai H BMC Genomics; 2016 Nov; 17(1):945. PubMed ID: 27871234 [TBL] [Abstract][Full Text] [Related]
9. A genome-wide BAC end-sequence survey of sugarcane elucidates genome composition, and identifies BACs covering much of the euchromatin. Kim C; Lee TH; Compton RO; Robertson JS; Pierce GJ; Paterson AH Plant Mol Biol; 2013 Jan; 81(1-2):139-47. PubMed ID: 23161199 [TBL] [Abstract][Full Text] [Related]
10. Comparison between a coffee single copy chromosomal region and Arabidopsis duplicated counterparts evidenced high level synteny between the coffee genome and the ancestral Arabidopsis genome. Mahé L; Combes MC; Lashermes P Plant Mol Biol; 2007 Aug; 64(6):699-711. PubMed ID: 17551672 [TBL] [Abstract][Full Text] [Related]
11. Exploring the genome of the salt-marsh Spartina maritima (Poaceae, Chloridoideae) through BAC end sequence analysis. Ferreira de Carvalho J; Chelaifa H; Boutte J; Poulain J; Couloux A; Wincker P; Bellec A; Fourment J; Bergès H; Salmon A; Ainouche M Plant Mol Biol; 2013 Dec; 83(6):591-606. PubMed ID: 23877482 [TBL] [Abstract][Full Text] [Related]
12. Micro-collinearity and genome evolution in the vicinity of an ethylene receptor gene of cultivated diploid and allotetraploid coffee species (Coffea). Yu Q; Guyot R; de Kochko A; Byers A; Navajas-Pérez R; Langston BJ; Dubreuil-Tranchant C; Paterson AH; Poncet V; Nagai C; Ming R Plant J; 2011 Jul; 67(2):305-17. PubMed ID: 21457367 [TBL] [Abstract][Full Text] [Related]
13. An overview of the apple genome through BAC end sequence analysis. Han Y; Korban SS Plant Mol Biol; 2008 Aug; 67(6):581-8. PubMed ID: 18521706 [TBL] [Abstract][Full Text] [Related]
14. Active transposable elements recover species boundaries and geographic structure in Madagascan coffee species. Roncal J; Guyot R; Hamon P; Crouzillat D; Rigoreau M; Konan ON; Rakotomalala JJ; Nowak MD; Davis AP; de Kochko A Mol Genet Genomics; 2016 Feb; 291(1):155-68. PubMed ID: 26231981 [TBL] [Abstract][Full Text] [Related]
15. Analysis of papaya BAC end sequences reveals first insights into the organization of a fruit tree genome. Lai CW; Yu Q; Hou S; Skelton RL; Jones MR; Lewis KL; Murray J; Eustice M; Guan P; Agbayani R; Moore PH; Ming R; Presting GG Mol Genet Genomics; 2006 Jul; 276(1):1-12. PubMed ID: 16703363 [TBL] [Abstract][Full Text] [Related]
16. Analysis of BAC-end sequences (BESs) and development of BES-SSR markers for genetic mapping and hybrid purity assessment in pigeonpea (Cajanus spp.). Bohra A; Dubey A; Saxena RK; Penmetsa RV; Poornima KN; Kumar N; Farmer AD; Srivani G; Upadhyaya HD; Gothalwal R; Ramesh S; Singh D; Saxena K; Kishor PB; Singh NK; Town CD; May GD; Cook DR; Varshney RK BMC Plant Biol; 2011 Mar; 11():56. PubMed ID: 21447154 [TBL] [Abstract][Full Text] [Related]
17. Construction of a BAC library of Korean ginseng and initial analysis of BAC-end sequences. Hong CP; Lee SJ; Park JY; Plaha P; Park YS; Lee YK; Choi JE; Kim KY; Lee JH; Lee J; Jin H; Choi SR; Lim YP Mol Genet Genomics; 2004 Jul; 271(6):709-16. PubMed ID: 15197578 [TBL] [Abstract][Full Text] [Related]
18. Construction and characterization of two BAC libraries from Brachypodium distachyon, a new model for grass genomics. Huo N; Gu YQ; Lazo GR; Vogel JP; Coleman-Derr D; Luo MC; Thilmony R; Garvin DF; Anderson OD Genome; 2006 Sep; 49(9):1099-108. PubMed ID: 17110990 [TBL] [Abstract][Full Text] [Related]
19. Sequencing of 6.7 Mb of the melon genome using a BAC pooling strategy. González VM; Benjak A; Hénaff EM; Mir G; Casacuberta JM; Garcia-Mas J; Puigdomènech P BMC Plant Biol; 2010 Nov; 10():246. PubMed ID: 21073723 [TBL] [Abstract][Full Text] [Related]
20. Development of new genomic microsatellite markers from robusta coffee (Coffea canephora Pierre ex A. Froehner) showing broad cross-species transferability and utility in genetic studies. Hendre PS; Phanindranath R; Annapurna V; Lalremruata A; Aggarwal RK BMC Plant Biol; 2008 Apr; 8():51. PubMed ID: 18447947 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]