These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 23709587)

  • 1. Commentary on: an (un)paralleled process?
    Layec G; Hart CR; Trinity JD; Richardson RS
    Exp Physiol; 2013 Aug; 98(8):1325. PubMed ID: 23709587
    [No Abstract]   [Full Text] [Related]  

  • 2. An (un)paralleled process?
    Rossiter HB
    Exp Physiol; 2013 Apr; 98(4):881. PubMed ID: 23520341
    [No Abstract]   [Full Text] [Related]  

  • 3. Training-induced acceleration of O(2) uptake on-kinetics precedes muscle mitochondrial biogenesis in humans.
    Zoladz JA; Grassi B; Majerczak J; Szkutnik Z; Korostyński M; Karasiński J; Kilarski W; Korzeniewski B
    Exp Physiol; 2013 Apr; 98(4):883-98. PubMed ID: 23204290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exercise-induced mitochondrial biogenesis in skeletal muscle.
    Hood DA; Saleem A
    Nutr Metab Cardiovasc Dis; 2007 Jun; 17(5):332-7. PubMed ID: 17467251
    [No Abstract]   [Full Text] [Related]  

  • 5. Mitochondrial plasticity with exercise training and extreme environments.
    Boushel R; Lundby C; Qvortrup K; Sahlin K
    Exerc Sport Sci Rev; 2014 Oct; 42(4):169-74. PubMed ID: 25062000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Greater Oxidative Capacity in Primary Myotubes from Endurance-trained Women.
    Heden TD; Ryan TE; Ferrara PJ; Hickner RC; Brophy PM; Neufer PD; McClung JM; Funai K
    Med Sci Sports Exerc; 2017 Nov; 49(11):2151-2157. PubMed ID: 28617704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elevated energy coupling and aerobic capacity improves exercise performance in endurance-trained elderly subjects.
    Conley KE; Jubrias SA; Cress ME; Esselman PC
    Exp Physiol; 2013 Apr; 98(4):899-907. PubMed ID: 23204291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Introduction to respiratory control in skeletal muscle.
    Starnes JW
    Med Sci Sports Exerc; 1994 Jan; 26(1):27-9. PubMed ID: 8133734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aerobic (un)trainability of children: mitochondrial biogenesis and the "crowded cell" hypothesis.
    Rowland T
    Pediatr Exerc Sci; 2009 Feb; 21(1):1-9. PubMed ID: 19411706
    [No Abstract]   [Full Text] [Related]  

  • 10. Use aerobic energy expenditure instead of oxygen uptake to quantify exercise intensity and predict endurance performance.
    Beck ON; Kipp S; Byrnes WC; Kram R
    J Appl Physiol (1985); 2018 Aug; 125(2):672-674. PubMed ID: 29446709
    [No Abstract]   [Full Text] [Related]  

  • 11. Reduced efficiency, but increased fat oxidation, in mitochondria from human skeletal muscle after 24-h ultraendurance exercise.
    Fernström M; Bakkman L; Tonkonogi M; Shabalina IG; Rozhdestvenskaya Z; Mattsson CM; Enqvist JK; Ekblom B; Sahlin K
    J Appl Physiol (1985); 2007 May; 102(5):1844-9. PubMed ID: 17234801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Skeletal muscle metabolism in endurance athletes with near-infrared spectroscopy.
    Brizendine JT; Ryan TE; Larson RD; McCully KK
    Med Sci Sports Exerc; 2013 May; 45(5):869-75. PubMed ID: 23247709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Greater muscle protein synthesis and mitochondrial biogenesis in males compared with females during sprint interval training.
    Scalzo RL; Peltonen GL; Binns SE; Shankaran M; Giordano GR; Hartley DA; Klochak AL; Lonac MC; Paris HL; Szallar SE; Wood LM; Peelor FF; Holmes WE; Hellerstein MK; Bell C; Hamilton KL; Miller BF
    FASEB J; 2014 Jun; 28(6):2705-14. PubMed ID: 24599968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maximal oxygen uptake is proportional to muscle fiber oxidative capacity, from chronic heart failure patients to professional cyclists.
    van der Zwaard S; de Ruiter CJ; Noordhof DA; Sterrenburg R; Bloemers FW; de Koning JJ; Jaspers RT; van der Laarse WJ
    J Appl Physiol (1985); 2016 Sep; 121(3):636-45. PubMed ID: 27445298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Muscle metabolism during exercise in young and older untrained and endurance-trained men.
    Coggan AR; Abduljalil AM; Swanson SC; Earle MS; Farris JW; Mendenhall LA; Robitaille PM
    J Appl Physiol (1985); 1993 Nov; 75(5):2125-33. PubMed ID: 8307869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial capacity, muscle endurance, and low energy in friedreich ataxia.
    Bossie HM; Willingham TB; Schoick RAV; O'Connor PJ; McCully KK
    Muscle Nerve; 2017 Oct; 56(4):773-779. PubMed ID: 28000230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined training enhances skeletal muscle mitochondrial oxidative capacity independent of age.
    Irving BA; Lanza IR; Henderson GC; Rao RR; Spiegelman BM; Nair KS
    J Clin Endocrinol Metab; 2015 Apr; 100(4):1654-63. PubMed ID: 25599385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptation of mitochondrial ATP production in human skeletal muscle to endurance training and detraining.
    Wibom R; Hultman E; Johansson M; Matherei K; Constantin-Teodosiu D; Schantz PG
    J Appl Physiol (1985); 1992 Nov; 73(5):2004-10. PubMed ID: 1474078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of Parkin and endurance training on mitochondrial turnover in skeletal muscle.
    Chen CCW; Erlich AT; Hood DA
    Skelet Muscle; 2018 Mar; 8(1):10. PubMed ID: 29549884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Training-induced acceleration of oxygen uptake kinetics in skeletal muscle: the underlying mechanisms.
    Zoladz JA; Korzeniewski B; Grassi B
    J Physiol Pharmacol; 2006 Nov; 57 Suppl 10():67-84. PubMed ID: 17242492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.